• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

基于粒子群支持向量机的轨道电路故障诊断

陈欣

陈欣. 基于粒子群支持向量机的轨道电路故障诊断[J]. 铁路计算机应用, 2016, 25(8): 56-59.
引用本文: 陈欣. 基于粒子群支持向量机的轨道电路故障诊断[J]. 铁路计算机应用, 2016, 25(8): 56-59.
CHEN Xin. Track circuit fault diagnosis based on particle swarm optimization and support vector machine[J]. Railway Computer Application, 2016, 25(8): 56-59.
Citation: CHEN Xin. Track circuit fault diagnosis based on particle swarm optimization and support vector machine[J]. Railway Computer Application, 2016, 25(8): 56-59.

基于粒子群支持向量机的轨道电路故障诊断

详细信息
    作者简介:

    陈欣,在读硕士研究生。

  • 中图分类号: U284.2:TP39

Track circuit fault diagnosis based on particle swarm optimization and support vector machine

  • 摘要: 支持向量机(SVM)是一种解决小样本分类问题的最佳理论算法,它的核函数的参数选择非常重要,直接影响着故障诊断的准确率。本文将粒子群算法(PSO)用于支持向量机的参数优化,提出基于粒子群支持向量机的故障诊断模型,并将其运用于轨道电路中。通过对比MATLAB仿真结果得出:经过粒子群寻优得到的参数比随机选取的参数更优,所建立的PSO-SVM模型的故障诊断准确率高于普通的SVM模型。
    Abstract: Support vector machine (SVM) is one of the best theoretical algorithm to solve the problem of small sample classification. Kernel parameter selection is very important, which directly affects the accuracy of fault diagnosis. In this paper, the particle swarm optimization (PSO) was used to optimize the parameters of SVM, the PSO-SVM model was proposed which was applied to fault diagnosis of track circuit. By comparing the MATLAB simulation results, it was concluded that the parameters obtained by PSO were better than the random parameters, and the fault diagnosis accuracy of the established PSO-SVM model was higher than that of the ordinary SVM model.
  • [1] 李文海.ZPW-2000A 移频自动闭塞系统原理、维护和故障处理[M]. 北京:中国铁道出版社,2010 :6-28.
    [2] 陈永义,熊秋芬. 支持向量机方法应用教程[M]. 北京:气象出版社,2011 :5-10.
    [3] 赵林海, 冉义奎, 穆建成. 基于遗传算法的无绝缘轨道电路故障综合诊断方法[J]. 中国铁道科学,2010,31(3):107-113.
    [4] 黄赞武. 轨道电路故障预测与健康管理关键技术研究[D]. 北京:北京交通大学,2013.
    [5] 王 彤. 基于最小二乘支持向量机的轨道电路故障诊断方法[J]. 铁道标准设计,2014,58(2):90-93.
    [6] 邓乃扬,田英杰. 数据挖掘中的新方法—支持向量机[M].北京:科学出版社,2004.
    [7] Kennedy J, Eberhart R C. Particle swarm optimization [C].Proc of IEEE International Conference on Nerual Networks, 1995:1942-1948.
    [8] REN Neng , LIANG Jun, GU Bo, et al. Fault diagnosis strategy for incompletely described sampels and its application to refrigeration system [J] . Mechanical Systems and Signal Processing, 2008,22(2):436-450.
计量
  • 文章访问数:  95
  • HTML全文浏览量:  0
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-21
  • 刊出日期:  2016-08-24

目录

    /

    返回文章
    返回