• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

基于大数据技术的铁路互联网售票异常用户行为分析研究与实现

郝晓培, 单杏花, 杨立鹏, 王拓

郝晓培, 单杏花, 杨立鹏, 王拓. 基于大数据技术的铁路互联网售票异常用户行为分析研究与实现[J]. 铁路计算机应用, 2017, 26(5): 1-5.
引用本文: 郝晓培, 单杏花, 杨立鹏, 王拓. 基于大数据技术的铁路互联网售票异常用户行为分析研究与实现[J]. 铁路计算机应用, 2017, 26(5): 1-5.
HAO Xiaopei, SHAN Xinghua, YANG Lipeng, WANG Tuo. Analysis of abnormal user behavior of railway Internet ticketing based on big data technology[J]. Railway Computer Application, 2017, 26(5): 1-5.
Citation: HAO Xiaopei, SHAN Xinghua, YANG Lipeng, WANG Tuo. Analysis of abnormal user behavior of railway Internet ticketing based on big data technology[J]. Railway Computer Application, 2017, 26(5): 1-5.

基于大数据技术的铁路互联网售票异常用户行为分析研究与实现

基金项目: 中国铁路总公司科研计划课题(J2016X009);中国铁道科学研究院科研项目(ASP15123037)
详细信息
    作者简介:

    郝晓培,在读硕士研究生;单杏花,研究员。

  • 中图分类号: U293.22∶TP39

Analysis of abnormal user behavior of railway Internet ticketing based on big data technology

  • 摘要: 近几年铁路互联网售票系统不断完善,给人民群众的出行带来了很大的便利,售票量不断增加,同时也存在抢票、囤票等异常用户行为,为了保障售票系统的安全稳定运行及维护公平公正的售票环境,提出了基于大数据技术的海量用户行为日志分析系统架构,有效地识别出异常购票行为。
    Abstract: In recent years, the railway Internet ticketing and reservation system has been continuously improved, which brings great convenience to people's travel and increasing ticketing sales at the same time, there exists grabbing tickets, store tickets and other abnormal user behavior. In order to ensure the safe and stable operation of the system and maintain fair and equitable ticketing environment, this article proposed the analysis system framework of large user behavior log based on big data technology. The framework could identify the abnormal ticketing behavior efficiently.
  • [1] 朱建生,王明哲,杨立鹏,等. 12306 互联网售票系统的架构优化及演进[J]. 铁路计算机应用, 2015,24(11):1-4.[2] 任 凯 , 邓 武,俞 琰. 基于大数据技术的网络日志分析系统研究[J]. 现代电子技术,2016(2):39-41.[3] 郝 璇. 基于Apache Flume 的分布式日志收集系统设计与实现[J]. 软件导刊 , 2014(7):110-111.[4] 王 岩,王 纯. 一种基于Kafka 的可靠的Consumer 的设计方案[J]. 软件,2016, 37(1).[5] 胡宇舟,范 滨,顾学道,等. 基于Storm 的云计算在自动清分系统中的实时数据处理应用[J]. 计算机应用,2014(s1):96-99.[6] 唐长城,杨 峰,代 栋,等. 一种基于HBase 的数据持久性和可用性研究[J]. 计算机系统应用,2013(10):175-180.[7] 姚登举,杨 静,詹晓娟. 基于随机森林的特征选择算法[J].吉林大学学报:工学版, 2014,44(1):137-141.[8] Kanungo T, Mount D M, Netanyahu N S, et al. An efficient k-means clustering algorithm: analysis and implementation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24(7):881-892.
计量
  • 文章访问数:  276
  • HTML全文浏览量:  23
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-05
  • 刊出日期:  2017-05-24

目录

    /

    返回文章
    返回