Anti-intrusion limit monitoring system for engineering involving railways based on fusion technology of laser radar and camera
-
摘要:
针对涉铁工程建设不断增多,防侵限监测需求持续提升的情况,设计了一种基于激光雷达和摄像头融合技术(简称:雷视融合)的涉铁工程防侵限监测系统。该系统采用铁路局集团公司监控中心、工地监控中心和现场防侵限监测设备三级架构,实现了针对涉铁工程侵限事件的精准监控和报警。文章阐述了该系统的具体功能和关键技术,并在涉铁工程项目中进行实际部署与测试,验证了系统的性能,具有推广价值。
Abstract:In response to the increasing construction of engineering involving railways and the continuous improvement of the demand for anti-intrusion limit monitoring, this paper designed an anti-intrusion limit monitoring system for engineering involving railways based on the fusion technology of laser radar and camera. The system adopted a three-level architecture consisting of the monitoring center of the railway group company, the construction site monitoring center, and the on-site anti-intrusion limit monitoring equipment, implemented precise monitoring and alarm for intrusion limit events in engineering involving railways. The paper elaborated on the specific functions and key technologies of the system, and deployed and tested the system in an engineering project involving railways to verify its performance, which had promotional value.
-
-
[1] 上海东华地方铁路开发有限公司. 涉铁工程典型案例[M]. 北京:中国铁道出版社有限公司,2024. [2] 刘祥敏. 临近铁路营业线大型机械设备的施工安全监管[J]. 设备管理与维修,2017(9):23-25. [3] 李 传,谢征宇,李永玲,等. 高速铁路周界入侵视频图像样本库[J]. 中国铁路,2021(3):136-143. [4] 宋小齐,袁钱芳. 基于多种传感技术融合的高铁周界入侵监测报警技术及应用[J]. 中国铁路,2023(10):143-150,157. [5] 朱涨鑫,谢以顺,铁 栋,等.基于UWB的铁路营业线施工要素定位与风险防控研究[J/OL].铁道标准设计,1-8.(2024-02-01)[2024-06-20]. https://doi.org/10.13238/j.issn.1004-2954.202305020002. [6] Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. DOI: 10.1109/34.888718
[7] Koide K, Oishi S, Yokozuka M, et al. General, single-shot, target-less, and automatic LiDAR-camera extrinsic calibration toolbox[C]//2023 IEEE International Conference on Robotics and Automation (ICRA), 29 May-2 June, 2023, London, United Kingdom. New York, USA: IEEE, 2023. 11301-11307.
[8] Zhou Y, Tuzel O. VoxelNet: End-to-end learning for point cloud based 3d object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18-23 June, 2018, Salt Lake City, USA. New York, USA: IEEE, 2018. 4490-4499.
[9] Yan Y, Mao Y X, Li B. SECOND: Sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337. DOI: 10.3390/s18103337
[10] 胡 杰,安永鹏,徐文才,等. 基于激光点云的深度语义和位置信息融合的三维目标检测[J]. 中国激光,2023,50(10):1010003. [11] Charles R Q, Su H, Mo K C, et al. PointNet: Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 21-26 July, 2017, Honolulu, USA. New York, USA: IEEE, 2017. 77-85.
[12] Qi C R, Yi L, Su H, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 4 December, 2017, Long Beach, USA. Red Hook: Curran Associates Inc. , 2017. 5105-5114.
[13] Shi S S, Wang X G, Li H S. PointRCNN: 3d object proposal generation and detection from point cloud[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 15-20 June, 2019, Long Beach, USA. New York, USA: IEEE, 2019. 770-779.
[14] 郑相波,姚国栋,史方圆,等. 大型施工机械监管系统智能视频分析模型研究[J]. 铁路计算机应用,2024,33(4):23-29. -
期刊类型引用(1)
1. 薛淑胜,冷映丽,张琳. 基于运行信息的断路器故障率预测研究. 大连交通大学学报. 2021(01): 112-115 . 百度学术
其他类型引用(0)