• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

基于激光位移传感器的城轨列车受电弓滑板磨耗检测方法

朱俊霖, 姚小文, 邢宗义

朱俊霖, 姚小文, 邢宗义. 基于激光位移传感器的城轨列车受电弓滑板磨耗检测方法[J]. 铁路计算机应用, 2023, 32(8): 87-93. DOI: 10.3969/j.issn.1005-8451.2023.08.16
引用本文: 朱俊霖, 姚小文, 邢宗义. 基于激光位移传感器的城轨列车受电弓滑板磨耗检测方法[J]. 铁路计算机应用, 2023, 32(8): 87-93. DOI: 10.3969/j.issn.1005-8451.2023.08.16
ZHU Junlin, YAO Xiaowen, XING Zongyi. Method of pantograph slide wear detection of urban rail trains based on laser displacement sensor[J]. Railway Computer Application, 2023, 32(8): 87-93. DOI: 10.3969/j.issn.1005-8451.2023.08.16
Citation: ZHU Junlin, YAO Xiaowen, XING Zongyi. Method of pantograph slide wear detection of urban rail trains based on laser displacement sensor[J]. Railway Computer Application, 2023, 32(8): 87-93. DOI: 10.3969/j.issn.1005-8451.2023.08.16

基于激光位移传感器的城轨列车受电弓滑板磨耗检测方法

基金项目: 国家重点研发计划项目(2021YFB1600704)
详细信息
    作者简介:

    朱俊霖,在读本科生

    姚小文,在读博士研究生

  • 中图分类号: U279.3 : U231 : TP39

Method of pantograph slide wear detection of urban rail trains based on laser displacement sensor

  • 摘要: 针对城市轨道交通(简称:城轨)列车受电弓滑板磨耗检测精度较低的问题,提出了一种基于激光位移传感器的城轨列车受电弓滑板磨耗检测方法。设计了受电弓滑板磨耗检测装置。采用该检测装置,通过数据筛选、数据融合和倾斜校正,获取受电弓滑板的实际轮廓线;将受电弓滑板的实际轮廓线与标准轮廓线进行曲线配准,获得受电弓滑板的磨耗曲线,实现受电弓滑板磨耗状态检测。在实验室搭建受电弓滑板磨耗检测装置进行实验,实验结果表明,与传统的检测方法相比,该检测方法具有较好的检测精度,符合城轨列车受电弓滑板磨耗测检测的实际要求。
    Abstract: Aiming at the low detection accuracy of pantograph slider wear for urban rail trains, this paper proposed a method of pantograph slider wear detection of urban rail trains based on the laser displacement sensor. The paper designed a wear detection device for the pantograph slider. By using this detection device, the paper obtained the actual wear contour of the pantograph slider by data filtering, data fusion and slider correction, matched the actual contour line with the standard contour line of the pantograph slider to obtain the wear curve of the pantograph slider plate, and achieved the detection of the wear status of the pantograph slider. By establishing a wear detection device for the pantograph slider in the laboratory for experiments, the experimental results show that the proposed method has good detection accuracy of pantograph slider wear compared with the traditional detection methods, and can meet the practical requirements for urban rail trains.
  • 图  1   受电弓滑板磨耗检测装置组成

    图  2   激光传感器数据融合坐标系转换示意

    图  3   受电弓滑板装配结构(局部)

    图  4   滑板磨耗区域划分

    图  5   受电弓滑板磨耗检测装置

    图  6   传感器测量滑板轮廓

    图  7   完整的受电弓滑板轮廓

    图  8   特征点检测

    图  9   不同算法曲线配准结果

    图  10   受电弓滑板磨耗曲线

    表  1   滑板磨耗测量结果

    编号人工检测/mm本文方法/mm误差/mm
    110.711.150.45
    23.02.660.34
    33.33.560.26
    49.18.640.16
    57.36.910.39
    611.111.350.25
    712.012.260.26
    89.49.050.35
    98.38.510.21
    1010.410.870.47
    下载: 导出CSV
  • [1] 温明亮,孙 悦,喻智霞,等. 城轨列车受电弓滑板边缘检测算法研究 [J]. 铁路计算机应用,2021,30(1):19-23.
    [2] 韩志伟,刘志刚,张桂南,等. 非接触式弓网图像检测技术研究综述 [J]. 铁道学报,2013,35(6):40-47.
    [3]

    Karakose E, Gencoglu M T, Karakose M, et al. A new experimental approach using image processing-based tracking for an efficient fault diagnosis in pantograph-catenary systems [J]. IEEE Transactions on Industrial Informatics, 2017, 13(2): 635-643. DOI: 10.1109/TII.2016.2628042

    [4] 朱晓恒. 受电弓典型故障图像检测算法的研究[D]. 成都: 西南交通大学, 2011.
    [5] 黄艳红. 受电弓滑板磨耗图像检测算法研究[D]. 成都: 西南交通大学, 2008.
    [6]

    Wei X K, Jiang S Y, Li Y, et al. Defect detection of pantograph slide based on deep learning and image processing technology [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 947-958. DOI: 10.1109/TITS.2019.2900385

    [7]

    Lu S F, Liu Z, Li D, et al. Automatic wear measurement of pantograph slider based on multiview analysis [J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3111-3121. DOI: 10.1109/TII.2020.2997724

    [8]

    Teng Y, Liu H L, Liu J W, et al. A rail corrugation measurement method based on data splicing [J]. Measurement, 2020(156): 107560.1-107560.11. DOI: 10.1016/j.measurement.2020.107560

    [9]

    Cheng X Q, Chen Y J, Xing Z Y, et al. A novel online detection system for wheelset size in railway transportation [J]. Journal of Sensors, 2016, 2016(6): 1-15.

    [10] 张良国,吴江琴,高 文,等. 基于Hausdorff距离的手势识别 [J]. 中国图象图形学报,2002,7(11):1144-1150.
    [11]

    Jost T, Hügli H. Fast ICP algorithms for shape registration[C]//24th DAGM Symposium on Pattern Recognition, 16-18 September, 2002, Zurich, Switzerland. Berlin, Germany: Springer, 2002: 91-99.

    [12] 董庆仑,尧辉明,翟字波. 基于改进ICP算法的波磨区域动态检测方法研究 [J]. 中国测试,2022,48(3):9-14,26.
    [13]

    Yao X W, Xing Z Y, Sheng A D, et al. An image-based online monitoring system for pantograph wear and attitude [J]. IEEE Transactions on Instrumentation and Measurement, 2022(71): 1-12.

图(10)  /  表(1)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  19
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-19
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回