Construction cost estimation for urban rail transit system based on ELM
-
摘要: 对城市轨道交通系统建设成本的估算能够在设计时实现城市轨道交通系统建设成本的控制与优化。针对传统成本估算模型计算量大、计算方法繁琐等缺点,基于多条在运营城市轨道交通线路的建设阶段成本数据,采用数据扩展的方法建立成本数据集。在选取少量关键成本指标的情况下,建立极限学习机(ELM,Extreme Learning Machine)模型,对城市轨道交通系统建设成本进行估算。测试结果表明,基于ELM的城市轨道交通系统建设成本估算模型的平均绝对百分比误差(MAPE,Mean Absolute Percentage Error)小于6%,在误差允许的范围内与实际数据吻合。该估算方法科学有效,能够满足城市轨道交通系统建设成本估算的工程需要。
-
关键词:
- 城市轨道交通系统 /
- 成本估算 /
- 极限学习机(ELM)
Abstract: The estimation of the construction cost of urban rail transit system can control and optimize the construction cost of urban rail transit system during the design.In view of the disadvantages of traditional cost estimation model, such as large amount of calculation, miscellaneous and tedious calculation methods, etc., based on the cost data in the construction stage for multiple operating urban rail transit lines, this paper used the method of data expansion to establish the cost data set, in the case of selecting a small number of key cost indicators, established the ELM (Extreme Learning Machine) model, estimates the construction cost of urban rail transit system.The estimation results show that the MAPE(Mean Absolute Percentage Error)of the construction cost estimation model of urban rail transit system based on ELM is less than 6%.The estimated results are in good agreement with the actual data.The method adopted in this paper is scientific and effective. It can meet the engineering needs of estimating the construction cost of urban rail transit system. -
-
表 1 线路建设成本数据表
单位:亿元/km 线路名称 前期准备成本 土建成本 车辆成本 车辆基地成本 机电设备成本 贷款利息 其他成本 延米造价 北京4号线 0.309 4 1.985 0 0.605 3 0.246 5 0.999 8 0.294 5 1.309 5 5.750 0 北京5号线 0.284 2 1.623 5 0.471 3 0.312 0 0.924 1 0.278 0 0.986 9 4.880 0 北京10号线 0.347 6 2.245 2 0.364 4 0.221 7 1.086 7 0.337 2 1.097 2 5.700 0 北京八通线 0.088 2 0.441 5 0.288 6 0.143 4 0.378 5 0.108 0 0.351 8 1.800 0 北京13号线 0.110 4 0.376 6 0.301 6 0.143 0 0.302 5 0.064 2 0.311 7 1.610 0 广州2号线 0.367 4 1.988 5 0.709 5 0.265 3 1.357 1 0.225 2 0.887 0 5.800 0 南京1号线 0.281 7 1.104 8 0.553 7 0.104 2 0.691 5 0.254 9 0.929 2 3.920 0 天津3号线 0.189 0 1.481 0 0.394 9 0.178 9 0.757 5 0.304 8 0.733 9 4.040 0 表 2 成本估算模型估算误差列表
数据集序号 MSE RMSE MAE MAPE 1 0.067 6 0.260 0 0.223 3 6.84% 2 0.042 3 0.205 7 0.160 9 3.70% 3 0.045 1 0.212 3 0.174 3 6.28% 4 0.045 6 0.213 5 0.162 8 4.57% 5 0.075 6 0.275 0 0.210 3 4.95% 6 0.099 9 0.316 0 0.261 1 7.23% 7 0.103 6 0.321 8 0.256 3 6.70% 8 0.053 1 0.230 4 0.177 6 4.07% 9 0.074 0 0.271 9 0.220 0 6.68% 10 0.055 4 0.235 4 0.191 9 4.35% -
[1] 王夏冰, 王瑛.BIM在轨道交通工程造价方面运用研究[J].魅力中国, 2019(23): 260-261. https://www.cnki.com.cn/Article/CJFDTOTAL-JUSH201909054.htm [2] 吕芳.低能耗建设工程动态成本预算控制模型研究[J].环境科学与管理, 2019, 44(8): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ201908012.htm [3] 孙亚南.盘山灌区改造工程造价动态估算研究[J].黑龙江水利科技, 2019, 47(7): 43-45, 185. https://www.cnki.com.cn/Article/CJFDTOTAL-HSKJ201907013.htm [4] 杨磊, 应黎明, 王玉磊.变电站建设全生命周期成本估算研究[J].计算机仿真, 2017, 34(1): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201701033.htm [5] 刘敬严, 陈蕾, 宋宁, 等.绿色高铁建设环境成本CS、BPNN估算方法研究[J].铁道工程学报, 2015(7): 111- 116. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201507021.htm [6] 段晓晨, 田贺, 张小平.绿色高铁运营环境成本非线性估算方法研究[J].铁道工程学报, 2016, 33(5): 123- 128. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201605022.htm [7] ]HUANG Guangbin, ZHU Qinyu, Chee-Kheong Siew. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2005, 70(1) : 489-501.
[8] 宋坤骏, 丁建明.代价敏感正则化有限记忆多隐层在线序列极限学习机及图像识别应用[J].铁路计算机应用, 2018, 27 (5): 18-22, 37. http://tljsjyy.xml-journal.net/article/id/4385 [9] 温廷新, 朱静.基于SAPSO-ELM的边坡稳定性预测[J].安全与环境学报, 2018, 18(6): 2146-2150. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201806017.htm [10] Kiyoumars Roushangar, Saba Mirza Alipour, Dominique Mouaze. Linear and non-linear approaches to predict the Darcy-Weisbach friction factor of overland flow using the extreme learning machine approach[J]. International Journal of Sediment Research, 2018, 33(4):415-432.
[11] 杨文成, 王圆圆, 孙军先.基于KR-SVM的城市轨道交通建设成本估算评价模型研究[J].交通工程, 2017, 17(3): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201703007.htm [12] 宋苏民, 旷文珍, 许丽, 等. RBF神经网络在铁路货运量预测中的应用[J].铁路计算机应用, 2017, 26(1): 47-51. http://tljsjyy.xml-journal.net/article/id/4120