TEDS fault recognition technology based on multi-source data analysis
-
摘要: 单点运行的动车组运行故障动态图像检测系统(TEDS)故障自动识别功能存在识别准确率不足,误判率高的问题。为此,提出了一种基于多源数据的动车组故障图像识别方法,以联网运行的TEDS数据为基础,结合传统的差异检测法,对不同空间与时间TEDS采集的同一列车图像进行多源数据融合与权重差异计算,实现了动车组车体异常部位的检测。试验表明,该方法建立了更为准确的对比参考源,减少了环境对成像内容的影响,能够提高动车组运行故障自动识别率,降低误报率。Abstract: The automatic fault recognition function for TEDS (Trouble of moving EMU Detection System) of singlepoint operation has the problems of insufficient recognition accuracy and high misjudgment rate. This paper proposeda fault image recognition method for EMU based on multi-source data. Based on TEDS data of network operationand combined with traditional difference detection method, the paper carried out the multi-source data fusion andweight difference calculation for the same train image collected by TEDS in different space and time, and implementedabnormal parts detection of EMU car body. Experiments show that the proposed method establishes a more accuratecomparative reference source, reduces the impact of the environment on the image content, improves the automaticrecognition rate of EMU operation fault, and reduces the false alarm rate.
-
-
[1] 中华人民共和国铁道部.动车组运行故障图像检测系统(TEDS)设备暂行技术条件:铁总运[2013] 8号[Z].北京:中华人民共和国铁道部, 2013. [2] 崔中伟.动车组行车安全图像联网监测应用技术研究[D].北京:中国铁道科学研究院, 2018. [3] 李骏.动车组运行故障动态图像检测系统(TEDS)设计与实现[D].北京:北京邮电大学, 2012. [4] 刘彬.动车组运行故障图像检测系统(TEDS)运用研究与思考[J].中国铁路, 2017(12):61-65. [5] 李九灵,冯维,孙国栋,等. TFDS故障动态图像识别系统的设计[J].湖北:湖北工业大学学报. 2013(5):9-11. [6] 马凌宇.用于动车组故障检测的图像识别算法研究[J].数字技术与应用, 2016(12):140-141. [7] 刘祖胜,方凯,刘硕研.用于动车组故障检测的图像识别算法[J].铁路计算机应用, 2015(12):1-4. [8] 马千里.中国铁路车辆运行安全监控系统建设规划研究[J].中国铁路, 2015(10):1-7. [9] 杨凯,贾志凯,吕赫,等.TEDS监控设备联网应用技术研究[C].中国智能交通协会. 2014第九届中国智能交通年会优秀论文集.北京:电子工业出版社, 2014, 7:252-258 [10] Daubechies I, Heil C. Ten Lectures on Wavelets[C]//Societyfor Industrial and Applied Mathematics philadephia, PA:SIAM/CBMS-NSF Regional Conference Series in AppliedMathematics, 1992:666-669.
-
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 71
- HTML全文浏览量: 40
- PDF下载量: 21
- 被引次数: 1