• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

基于贝叶斯网络的地铁牵引变电所可靠性分析

何江海, 裴卫卫, 闫雅斌, 鲁晓珊, 邢宗义

何江海, 裴卫卫, 闫雅斌, 鲁晓珊, 邢宗义. 基于贝叶斯网络的地铁牵引变电所可靠性分析[J]. 铁路计算机应用, 2019, 28(8): 68-74.
引用本文: 何江海, 裴卫卫, 闫雅斌, 鲁晓珊, 邢宗义. 基于贝叶斯网络的地铁牵引变电所可靠性分析[J]. 铁路计算机应用, 2019, 28(8): 68-74.
HE Jianghai, PEI Weiwei, YAN Yabin, LU Xiaoshan, XING Zongyi. Reliability analysis of metro traction substation based on Bayesian Network[J]. Railway Computer Application, 2019, 28(8): 68-74.
Citation: HE Jianghai, PEI Weiwei, YAN Yabin, LU Xiaoshan, XING Zongyi. Reliability analysis of metro traction substation based on Bayesian Network[J]. Railway Computer Application, 2019, 28(8): 68-74.

基于贝叶斯网络的地铁牵引变电所可靠性分析

基金项目: 

国家重点研发计划资助(2017YFB1201202)

详细信息
    作者简介:

    何江海,高级工程师;裴卫卫,在读硕士研究生。

  • 中图分类号: U231.8;TP39

Reliability analysis of metro traction substation based on Bayesian Network

  • 摘要: 地铁牵引变电所作为城市轨道交通系统的关键环节,其可靠性研究对保障系统安全稳定运行有着重要意义。为了对地铁牵引变电所(简称:变电所)展开可靠性评估,利用GeNIE仿真软件,基于贝叶斯网络,构建了典型变电所静态下的可靠性模型,计算了变电所的初始故障概率;利用动态贝叶斯网络对典型变电所在时间维度上展开可靠性分析,精确地计算了变电所失效概率随时间变化的曲线;利用贝叶斯网络的双向推理功能找到变电所的薄弱环节,对变电所关键节点的识别、维护以及网络结构设计优化具有一定的意义。
    Abstract: As the key link of urban rail transit system, the reliability study of metro traction substation is of great significance to ensure the safe and stable operation of the system. In order to evaluate the reliability of the metro traction substation, this paper established reliability model of the typical metro traction substation based on Bayesian Network, calculated the initial failure probability of the system, used the Dynamic Bayesian Network to analyze the reliability of the typical metro traction substation in time dimension, and accurately calculated the curve of system failure probability with time. Finally, the paper used the two-way inference function of Bayesian Network to find the weak link of the system. It has certain significance for the identification, maintenance of key nodes and the optimization of network structure design in substation.
  • [1] 崔红建,马天山. 基于交通需求下的城市交通可持续发展策略研究[J]. 武汉理工大学学报(社会科学版),2009,22(3):80-84.
    [2] 杨伟浩. 可靠性分析方法的研究及其在高速铁路中的应用[D]. 成都:西南交通大学, 2016.
    [3] 李想. 地铁供电接触网系统可靠性及主要故障分析[J]. 电子测试, 2015(23):121, 76.
    [4] 曾德容. 地铁供电系统可靠性和安全性分析方法研究[D]. 成都:西南交通大学, 2008.
    [5] 曹景雷. 基于GO法的地铁牵引供电系统可靠性研究[D]. 成都:西南交通大学, 2012.
    [6] 徐浩. 地铁牵引变电所主接线可靠性研究[J]. 控制与信息技术, 2018(5):66-69.
    [7]

    Zhang L, Wu X, Skibniewski M J, et al. Bayesian-networkbased safety risk analysis in construction projects[J]. Reliability Engineering & System Safety, 2014, 131(3):29-39.

    [8] 王冠峰. 基于故障树和贝叶斯网络的发动机可靠性预计[D]. 济南:山东大学, 2017.
    [9]

    Wu X. Liu H, Zhang L, et al. A Dynamic Bayesian network based approach to safety decision support in tunnel construction[J]. Reliability Engineering & System Safety, 2015(134):157-168.

    [10]

    Cai B, Liu Y, Ma Yunpeng, et al. Research on the Dynamic Bayesian Networks based Real-Time Reliability Evaluation Methodology[EB/OL].[2014-06-11]. http://www.paper.edu.cn/releasepaper/content/201406-167.

  • 期刊类型引用(1)

    1. 姜帅,吴霞,王东妍,郭心全,庄勇. 铁路工务设备管理系统设计与应用. 铁路计算机应用. 2024(05): 31-35 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  78
  • HTML全文浏览量:  1
  • PDF下载量:  7
  • 被引次数: 1
出版历程
  • 收稿日期:  2018-07-07

目录

    /

    返回文章
    返回