• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

一种动态加权模糊聚类算法的研究

刘锐, 张宁

刘锐, 张宁. 一种动态加权模糊聚类算法的研究[J]. 铁路计算机应用, 2018, 27(5): 5-5.
引用本文: 刘锐, 张宁. 一种动态加权模糊聚类算法的研究[J]. 铁路计算机应用, 2018, 27(5): 5-5.
LIU Rui, ZHANG Ning. Dynamic weighted fuzzy clustering algorithm[J]. Railway Computer Application, 2018, 27(5): 5-5.
Citation: LIU Rui, ZHANG Ning. Dynamic weighted fuzzy clustering algorithm[J]. Railway Computer Application, 2018, 27(5): 5-5.

一种动态加权模糊聚类算法的研究

详细信息
  • 中图分类号: U266.2∶TP39

Dynamic weighted fuzzy clustering algorithm

  • 摘要: 针对模糊C均值聚类(FCM)算法选取初始中心具有随机性这一缺陷,利用遗传算法优化FCM算法,根据适应度函数动态确定交叉、变异算子,从而选取最优初始中心,避免FCM算法陷入局部极小;针对FCM受噪声点、孤立点影响较大的缺陷,利用LOF加权降低数据噪声点对聚类的影响,并将FCM聚类、遗传算法、加权策略相结合,提出一种新的动态加权模糊聚类算法。经UCI通用数据集验证,优化后的聚类算法可以有效提高聚类质量和准确度。
    Abstract: Aimed at the defect that the initial center selected by fuzzy C-means clustering (FCM) algorithm is random, this paper presented the use of genetic algorithm to optimize FCM algorithm. According to the fitness function to adaptively determine the crossover, mutation operator, thus choose the optimal initial center, avoide the FCM algorithm into a local minimum; Aiming at the defect that FCM is influenced by noise point and isolated point, this paper used LOF weighting to reduce the impact of noise points on the clustering. Combining with FCM clustering, genetic algorithm and weighted strategy, a new dynamic weighted fuzzy clustering algorithm was proposed. The UCI universal data set verified that the optimized algorithm effectively improved the quality and accuracy of clustering.
  • [1] 伍育红. 聚类算法综述[J].计算机科学, 2015, 42(Z6):491-499.
    [2] 欧阳喜德,黄地龙. 基于模糊聚类的数据挖掘方法与应用[J]. 铁路计算机应用,2008,17(4):13-16.
    [3] 朱然,李积英. 几种优化FCM算法聚类中心的方法对比及仿真[J]. 计算机技术与发展,2015(5):17-20.
    [4] 付强,袁磊. 基于聚类分析及SVM的DMI机车信号自动识别[J]. 铁路计算机应用, 2015(8):46-49.
    [5] 朴尚哲,超木日力格,于剑. 模糊C均值算法的聚类有效性评价[J]. 模式识别与人工智能,2015,28(5).
    [6] 胡嘉骏,侯丽丽,王志刚,等. 基于模糊C均值隶属度约束的图像分割算法[J]. 计算机应用,2016,36(1):126-129.
    [7] Yang S, Kim J, Chung M.A prediction model based on Big Data analysis using hybrid FCM clustering[C]// Internet Techno-logy and Secured Transactions. IEEE, 2015:337-339.
    [8] Vimali J S, Taj Z S.FCM based CF: An efficient approach for consolidating big data applications[C]// International Conference on Innovation Information in Computing Technologies. IEEE, 2016:1-7.
    [9] 李赢, 舒乃秋. 基于模糊聚类和完全二叉树支持向量机的变压器故障诊断[J].电工技术学报, 2016,31(4):64-70.
    [10] 肖林云,陈秀宏,林喜兰. 特征加权和优化划分的模糊C均值聚类算法[J]. 微电子学与计算机,2016,33(10):143-146.
    [11] Varghese J, Subash S, Khan M S, et al.An efficient LOF-based long-range correlation filter for the restoration of salt and pepper impulse corrupted digital images[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2016, 24(4):2429-2441.
计量
  • 文章访问数:  124
  • HTML全文浏览量:  1
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-22
  • 刊出日期:  2018-05-24

目录

    /

    返回文章
    返回