Fatigue driving detection system for EMU drivers based on smart bracelet
-
摘要: 基于智能手环的动车司机疲劳驾驶检测系统可对疲劳驾驶行为进行报警,对高速铁路行车安全至关重要。本文阐述系统的整体设计和各模块功能,分析智能手环的工作原理和手部加速度信息的采集过程。在分析动车司精神状态与手部运动关系的基础上,给出手部运动系数的概念,并运用K-means聚类算法进行分析处理,提出一种动车司机疲劳驾驶检测模型。在动车组驾驶室搭建原型系统,阐述系统的实现过程,并在高速铁路试验段进行试验,试验结果表明,该系统对司机疲劳驾驶检测的准确率达到93.6%。Abstract: Fatigue driving detection system for EMU drivers based on smart bracelet can alarm the fatigue driving behavior, which is very important to the traffic safety of high-speed railway. This article described the overall design of the system and the function of each module, analyzed the working principle of smart bracelet and the acquisition process of hand acceleration information, based on the analysis of the relationship between the mental state and the hand movement, given the concept of motion coefficient of the hand part, used K-means clustering algorithm for analysis and processing, proposed a fatigue driving detection model for EMU drivers, described the implementation process of the system, built a prototype system in the EMU cab, carried out experiments in the high-speed railway test section. Experimental results showed that the system had higher accuracy in fatigue driving detection
-
Keywords:
- fatigue driving /
- K-means algorithm /
- smart bracelet
-
-
[1] 李志春,何仁,林谋有,等. 驾驶员疲劳检测技术的研究现状及发展趋势[J]. 农机化研究,2006(5):197-199. [2] 侯文生,戴加满,郑小林,等. 基于加速度传感器的前臂运动姿态检测[J]. 传感器与微系统, 2009, 28(1):106-108. [3] 戴加满. 基于三轴加速度传感器的手指运动参数检测[D]. 重庆:重庆大学,2009. [4] Sun W, Zhang X, Zhuang W, et al.Driver Fatigue Driving Detection Based on Eye State[J]. International Journal of Digital Content Technology & Its Applications, 2011, 5(10):307-314. [5] 周玉彬,俞梦孙. 疲劳驾驶检测方法的研究[J]. 医疗卫生装备,2003,24(6):25-28. [6] Wagstaff K, Cardie C, Rogers S, et al.Constrained K-means Clustering with Background Knowledge[C]. Eighteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc. 2001:577-584. [7] 杨善林, 李永森, 胡笑旋,等. K-means算法中的k值优化问题研究[J]. 系统工程理论与实践, 2006,26(2):97-101. [8] 袁方,周志勇,宋鑫. 初始聚类中心优化的k-means算法[J]. 计算机工程, 2007,33(3):65-66. [9] 杨海燕,蒋新华,聂作先. 驾驶员疲劳检测技术研究综述[J]. 计算机应用研究,2010,27(5):1621-1624. -
期刊类型引用(5)
1. 林峰,王万齐,王学义,闫晓春,张郧. 基于数字孪生的环行铁道智能铁路试验探索. 数字技术与应用. 2022(11): 144-147+172 . 百度学术
2. 巩灿灿,叶小岭,熊雄,姚锦松,金瞳宇,陈昕. 高铁沿线某区段最大风速时空分布特征分析. 重庆理工大学学报(自然科学). 2021(05): 177-184 . 百度学术
3. 李莹,高歌,程驰. 影响中国高速铁路运行的暴雨危险性特征研究. 地理科学. 2021(10): 1843-1851 . 百度学术
4. 马国富,李天发,汪玉红. 大数据背景下的重新犯罪统计分析与预测研究. 河南司法警官职业学院学报. 2020(01): 77-82 . 百度学术
5. 董鹏乐. 兰新高铁挡风墙区段风监测系统研究及应用. 现代信息科技. 2020(03): 116-118+122 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 82
- HTML全文浏览量: 0
- PDF下载量: 41
- 被引次数: 8