• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

深度学习在接触网定位器缺陷检测中的应用

张毅

张毅. 深度学习在接触网定位器缺陷检测中的应用[J]. 铁路计算机应用, 2018, 27(3): 15-19.
引用本文: 张毅. 深度学习在接触网定位器缺陷检测中的应用[J]. 铁路计算机应用, 2018, 27(3): 15-19.
ZHANG Yi. Deep learning applied to defect detection of contact line locator[J]. Railway Computer Application, 2018, 27(3): 15-19.
Citation: ZHANG Yi. Deep learning applied to defect detection of contact line locator[J]. Railway Computer Application, 2018, 27(3): 15-19.

深度学习在接触网定位器缺陷检测中的应用

详细信息
  • 中图分类号: U225.4:TP39

Deep learning applied to defect detection of contact line locator

  • 摘要: 高速动车接触网运营安全的需求使得接触网关键零部件的缺陷自动检测成为一份有意义的工作。针对接触网巡检图像的定位器缺陷检测问题,本文提出了一种基于图像深度表示和直线检测的目标检测一体化算法。该算法采用选择搜索算法获得定位器在图像中可能存在的备选区域,利用深度卷积神经网络计算图像的深度特征,通过多任务学习的算法求得定位器的局部区域。随后,利用Canny边缘提取和Hough直线检测的方法在局部区域内精确检测定位器直线。针对接触网巡检图像的实际应用场景,对该算法在不同场景下进行验证,试验结果表明,该算法可以有效解决实际场景下的定位器缺陷检测问题。
    Abstract: Aiming at the locator defect detection of contact line inspection image, this paper proposed a detection integration algorithm based on image depth representation and line detection. This algorithm adopted selective search algorithm to obtain the possible alternative regions in image where locator may exist. The deep features of image were calculated by deeply convolutional neural network and local region of locator could be obtained by multi-task learning algorithm. Subsequently, by using Canny edge extraction and Hough line detection method, locator line could be exactly detected in local region. According to the practical application scene of contact line inspection image, this algorithm has been tested by several locator detection tasks at different scenes. The experiments proved that this algorithm could solve the detector defect detections problems effectively in complex environment.
  • [1] 罗 健. 高速铁路接触网定位器坡度问题的深化研究[J],铁道工程学报,2013(1):76-81.
    [2] Nasrabadi N M. A stereo vision technique using curve-segments and relaxation matching[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1992(5): 566-572.
    [3] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91-110.
    [4] Felzenszwalb P F, Girshick R B, McAllester D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 2010, 32(9): 1627-1645.
    [5] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
    [6] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.
    [7] Sermanet P, Kavukcuoglu K, Chintala S, et al. Pedestrian detection with unsupervised multi-stage feature learning[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013: 3626-3633.
    [8] Gu C, Lim J J, Arbeláez P, et al. Recognition using regions[C]// IEEE Conference on. IEEE on Computer Vision and Pattern Recognition, 2009. CVPR 2009: 1030-1037.
    [9] 李文辉. 航拍视频中运动目标的检测与跟踪算法研究[D].西安:西安电子科技大学,2014.
    [10] 王海地. 基于显著性检测和分类器训练的航拍图像车辆检测[D].北京:北京交通大学,2015.
    [11] Jia Y, Shelhamer E, Donahue J, et al. Caffe: Convolutional architecture for fast feature embedding[C]//Proceedings of the ACM International Conference on Multimedia. ACM, 2014: 675-678.
  • 期刊类型引用(5)

    1. 闫昌浩,李平芳. 基于双目3D视觉技术的接触网几何参数动态检测系统. 铁路计算机应用. 2024(09): 68-77 . 本站查看
    2. 冯新伟,黄宇祥,王忠立. 基于卷积块注意力模块和双向特征金字塔网络的接触网支持装置检测方法研究. 铁道技术监督. 2023(04): 16-24 . 百度学术
    3. 蔡檬屿,郭旭,王浩帆,李良平,张瀚文. 基于深度学习的铁路辅助巡检系统. 铁路计算机应用. 2020(09): 12-15 . 本站查看
    4. 王超. 基于卷积神经网络优化算法的列车智能测试系统技术研究. 铁路计算机应用. 2019(05): 1-5+10 . 本站查看
    5. 薛宪堂,王登阳,张翼,周威,王燕国. 基于卷积神经网络的接触网支柱号识别方法研究. 铁路计算机应用. 2019(09): 11-15 . 本站查看

    其他类型引用(17)

计量
  • 文章访问数:  95
  • HTML全文浏览量:  2
  • PDF下载量:  74
  • 被引次数: 22
出版历程
  • 收稿日期:  2017-09-10
  • 刊出日期:  2018-03-14

目录

    /

    返回文章
    返回