• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

基于旅客出行意图的潜在高价值航线挖掘

卢敏, 李照宇, 刘康超, 李纯

卢敏, 李照宇, 刘康超, 李纯. 基于旅客出行意图的潜在高价值航线挖掘[J]. 铁路计算机应用, 2018, 27(7): 109-114.
引用本文: 卢敏, 李照宇, 刘康超, 李纯. 基于旅客出行意图的潜在高价值航线挖掘[J]. 铁路计算机应用, 2018, 27(7): 109-114.
LU Ming, LI Zhaoyu, LIU Kangchao, LI Chun. Exploration of potential high-value airlines based on passenger travel intentions[J]. Railway Computer Application, 2018, 27(7): 109-114.
Citation: LU Ming, LI Zhaoyu, LIU Kangchao, LI Chun. Exploration of potential high-value airlines based on passenger travel intentions[J]. Railway Computer Application, 2018, 27(7): 109-114.

基于旅客出行意图的潜在高价值航线挖掘

基金项目: 国家自然科学基金项目(61502499); 大学生创新创业训练计划项目(201710059047); 中国民航大学科研基金(2013QD18X); 中山大学机器智能与先进计算教育部重点实验室开放课题(MSC-201704A); 中央高校基本科研业务费科研专项(3122013C005)
详细信息
    作者简介:

    卢 敏,助理研究员;李照宇,在读本科生。

  • 中图分类号: U8:TP39

Exploration of potential high-value airlines based on passenger travel intentions

  • 摘要: 借助Map-reduce平台对旅客订票日志进行挖掘,并采用LDA算法挖掘旅客出行意图,进而计算航线的潜在价值。在2011年中航信民航旅客订票日志上的实验结果表明:采用LDA算法挖掘的航线与实际热门航线的Jacarrd 相似系数达92%,比基于航班次数统计的传统方法高出2%,能够更准确、更有效地预测航线的未来价值。
    Abstract: This paper used the map-reduce platform to mine the passenger booking logs, used the LDA algorithm to mine passenger’s travel intentions, and then calculated the potential value of the airline. The experimental results on the passenger name records in 2011 indicate that the similarity(Jacarrd Index) between the airlines excavated and the actual hot airlines is up to 92%, which is 2% higher than the conventional method based on the number of flights. It can predict the future value of the airline more accurately and effectively.
  • [1] 杨迎卯. 城市轨道交通行为分析与数据挖掘决策系统研究[J]. 铁路计算机应用,2016,25(6):65-69.
    [2] 冯宇,张琪. 浅谈新航线的开辟(一)[J]. 空运商务,2007(3):12-15.
    [3] 张永莉,张晓全. 我国城市间航空客运量影响因素的实证分析[J]. 经济地理, 2007,27(4):658-660.
    [4] 吴薇薇,朱金福. 航线开辟优选方案模型的集对分析研究[J]. 工业技术经济,2009,28(7): 121-124.
    [5] S Deerwester,ST Dumais,GW Furnas,TK Landauer,R Harshman. Indexing by latent semantic analysis[J]. Journal of the Association for Information Science and Technology, 41(6):391-407, 1990.
    [6] DM Blei,AY Ng,MI Jordan.Latent dirichlet allocation[J]. Journal of Machine Learning Research, 3:993-1022, 2003.
    [7] J Boydgraber,DM Blei. Syntactic Topic Models[C]//Advances in Neural Information Processing Systems, 185-192, 2010.
    [8] J Qiang,P Chen,T Wang,X Wu.Topic Modeling over Short Texts by Incorporating Word Embedding[C]//Advances in Knowledge Discovery and Data Mining, 2017: 363-374.
    [9] S Lacoste-Julien,S Fei,MI Jordan. DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification[C]// Proceedings of NIPS Neural Information Processing, 897-904, 2008.
    [10] I Bíró,J Szabó.Large scale link based latent Dirichlet allocation for web document classification[C]// Computer Science, 2010.
    [11] M. Rosen-Zvi, T. Griffiths, M. Steyvers, P. Smyth.The author-topic model for authors and documents[C]//Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence, 2004.
    [12] Yan Liu, Alexandru Niculescu-Mizil.Topic-Link LDA: Joint Models of Topic and Author Community[C]//Proceedings of the 26th International Conference on Machine Learning, 2009.
    [13] David M. Blei, John D.Lafferty . Correlated Topic Models[C]//In NIPS, 2005.
    [14] J Paisley, C Wang, DM Blei, MI Jordan. Nested Hierar-chical Dirichlet Processes[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 37(2):256-70, 2014.
    [15] David Blei, Jon Mcauliffe.Supervised Topic Models[C]//In Advances in Neural Information Processing Systems,2008.
    [16] K Than, BH Tu. Inference in topic models: sparsity and trade-off[C]//Statistics, 2015
    [17] K Henderson, T Eliassi-Rad. Applying latent dirichlet alloca-tion to group discovery in large graphs[C]//Acm Symposium on Applied ComputingT Eliassi-Rad. Applying latent dirichlloca-tion to group discovery in large graphs[C]//Acm Symposium on Applied Computing,1456-1461,2009.
    [18] H Zhang, B Qiu, CL Giles, HC Foley. An LDA-based Community Structure Discovery Approach for Large-Scale Social Networks[C]//IEEE International Conference on Intelligence & Security Informatics. 200-207, 2007.
    [19] 于辉,陈敬光. 基于CVaR的航空公司机票超售策略[J]. 工业工程, 2012,15(1):1-7.
    [20] 顾兆军,王伟,李晓红. 基于潜在类别模型的航空旅客分类[J]. 计算机技术与发展, 2012, 22(4):182-186.
    [21] 潘玲玲, 张育平, 徐涛. 核DBSCAN算法在民航客户细分中的应用[J]. 计算机工程, 2012,38(10):70-73.
    [22] Z.H. Wu, Y.F. Lin, et al.Balanced multi-label propagation for overlapping community detection in social networks[J]. Journal of Computer Science and Technology, 27(3):468-479, 2012.
    [23] 林友芳,王天宇,唐锐,等. 一种有效的社会网络社区发现模型和算法[J]. 计算机研究与发展, 2012,49(2):337-345.
    [24] H.Y. Wan, Y.F. Lin, C.Y. Jia, H.K. Huang.Community-based relational Markov networks in complex networks[C]//In Proceedings of the 6th international conference on Rough sets and knowledge technology, pages 301-310, 2011.
    [25] Z.H. Wu, Y.F. Lin, et al.Efficient overlapping community detection in huge real-world networks[J]. Physica A: Statistical Mechanics and its Applications, 391(7):2475-2490, 2012.
    [26] X. Feng, B.Y. Xu, M. Lu and C.Y. Zhang. Infrequent Passenger Value Discovery by Random Walk on Passenger-route Heterogenzeous Network[J]. Journal of Computational and Theoretical Nanoscience, 2(1):10-17,2015.
计量
  • 文章访问数:  84
  • HTML全文浏览量:  0
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-09
  • 刊出日期:  2018-07-24

目录

    /

    返回文章
    返回