• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

动车组运行状态智能检测装备

张望, 刘硕研, 柴金川

张望, 刘硕研, 柴金川. 动车组运行状态智能检测装备[J]. 铁路计算机应用, 2018, 27(7): 70-74.
引用本文: 张望, 刘硕研, 柴金川. 动车组运行状态智能检测装备[J]. 铁路计算机应用, 2018, 27(7): 70-74.
ZHANG Wang, LIU Shuoyan, CHAI Jinchuan. Intelligent detection equipment for EMU operating state[J]. Railway Computer Application, 2018, 27(7): 70-74.
Citation: ZHANG Wang, LIU Shuoyan, CHAI Jinchuan. Intelligent detection equipment for EMU operating state[J]. Railway Computer Application, 2018, 27(7): 70-74.

动车组运行状态智能检测装备

基金项目: 中国铁道科学研究院院基金资助项目(15124025,2017YJ144)
详细信息
    作者简介:

    张 望,工程师;刘硕研,副研究员。

  • 中图分类号: U266.2:U260.42:TP39

Intelligent detection equipment for EMU operating state

  • 摘要: 动车组运行状态智能检测装备设置于动车段入库线上,主要针对动车组走行部、车顶和受电弓在运用中出现内部缺陷、磨损、损坏及尺寸超限的故障比率问题。实时采集运行列车的底部、侧部和顶部图像,采用故障自动识别策略,对列车的车底走行部、闸瓦、转向架、接触网等与列车有关的各个部件进行动态监控。根据实验和现场使用情况,本检测设备满足铁路机车运行时对走行部和受电弓进行在线测量检测的要求,其中,走行部检测精度可达1 mm,滑板磨耗值测量精度可达0.2 mm。鉴于此,该动车组智能检测装备能及时发现故障隐患,为检修和更换提供依据,保证动车组运行安全。
    Abstract: Aiming at the fault ratio problems of internal defects, wear, damage and overload size in the use of the moving part, the roof and the pantograph of the EMU, the intelligent detection equipment for EMU operating state was set to the finished line of EMU depot. The equipment was used to collect the images of the bottom, side, and top of the running train in real -time, apply automatic fault recognition strategy to dynamically monitor the state of various parts related to the train, such as the running gear, the brake shoe, the bogie, the contact network, etc. According to the experiment and field use, this equipment meets the measurement requirements for the on-line measurement and detection of the running gear and pantograph in the running of railway locomotives. The measuring precision of the running gear can reach 1 mm, the measurement accuracy of the wear value of the slider can reach 0.2 mm. In view of this, this equipment can find the problems on time, provide the basis for maintenance and replacement, and ensure the safety of the EMU operation.
  • [1] 李骏. 动车组运行故障动态图像检测系统(TEDS)设计与实现[D].北京:北京邮电大学,2012.
    [2] 许艳峰. 动车组故障轨边图像自动检测系统图像对比算法研究[J]. 铁路计算机应用,2013,22(5): 23-26.
    [3] 陈雷, 赵长波. TFDS动态检查方法与技巧[M].北京:中国铁道出版社,2010.
    [4] Lowe D.Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
    [5] Girshick, Donahue, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), USA,2014:580-587.
    [6] Uijlings,Jasper RR, et al.Selective search for objectrecognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171.
    [7] 中华人民共和国铁道部.电力机车受电弓动态检测系统:TB/T 3185-2007[S].北京:中国铁道出版社,2007.
    [8] 邱存勇,肖建. 机车受电弓滑板磨耗的图像处理算法研究[J].计算机工程与应用,2015,51(9):164-167.
    [9] Charles R, Hao Su, Kaichun Mo, et al.PointNet:Deep Learning on Point Sets for 3D Classification and Segmentation[J]. Computer vision and pattern recognition,2017(10): 652-660.
    [10] 张晓军. 动车组检修管理信息系统的研究与实现[J]. 铁路计算机应用,2014,23(8):23-26.
    [11] 张惟皎,贾志凯. 动车组运用检修信息化管理探讨[J]. 铁路计算机应用,2013,22(1):5-9.
计量
  • 文章访问数:  99
  • HTML全文浏览量:  1
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-09
  • 刊出日期:  2018-07-24

目录

    /

    返回文章
    返回