• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

用于动车组故障检测的车号识别算法

方凯

方凯. 用于动车组故障检测的车号识别算法[J]. 铁路计算机应用, 2016, 25(5): 14-18.
引用本文: 方凯. 用于动车组故障检测的车号识别算法[J]. 铁路计算机应用, 2016, 25(5): 14-18.
FANG Kai. Train identification algorithm for EMU trouble detection[J]. Railway Computer Application, 2016, 25(5): 14-18.
Citation: FANG Kai. Train identification algorithm for EMU trouble detection[J]. Railway Computer Application, 2016, 25(5): 14-18.

用于动车组故障检测的车号识别算法

基金项目: 中国铁道科学研究院基金资助项目(2013YJ05)。
详细信息
    作者简介:

    方凯,副研究员。

  • 中图分类号: U266.2∶U284.55

Train identification algorithm for EMU trouble detection

  • 摘要: 列车车号是其身份的唯一标识,动车组运行故障动态图像检测系统(TEDS)根据列车车号在图像库中找寻该列车拍摄的历史图像,以其比对现场采集图像,从而实现对运行列车状态的实时监测。然而动车组目前尚未安装射频识别电子标签,鉴于此,利用视频分析技术对动车组车号图像进行自动识别成为亟需解决的问题。文章提出一种基于语义共生概率的模板匹配算法对车号字符进行识别。实验结果表明,本算法对车号的识别正确率和有效性满足铁路总公司的相关要求,保障了TEDS的工作效果。
    Abstract: The train number is a unique identification of the train. The Trouble of moving EMU Detection System (TEDS) is aimed to detect the trouble of moving EMU images based on the matching between present image and previous one which searches in the image database of the train number. However the RFID electronic tag does not installed in the EMU. Hence, the EMU train number recognition has become urgent to solve the problem. The article proposed a template matching algorithm based on semantic symbiosis probability to identify the train number. The experimental results showed that the correct rate and effectiveness of the proposed approach could conform with the regulation of China Railways, ensure the effect of TEDS.
  • [1] 李 骏 . 动车组运行故障动态图像检测系统(TEDS)设计与实现 [D]. 北京 :北京邮电大学,2012. JUN L. The Design and Implementation of TEDS System[D]. Beijing: Beijing University of Posts and Telecommunications, 2012.
    [2] 许艳峰 . 动车组故障轨边图像自动检测系统图像对比算法研究 [J]. 铁路计算机应用 , 2013,22(5): 23-26. XU Y F. Research on image contrasting algorithm for TEDS [J]. Railway Computer Application, 2013, 22(5):23-26.
    [3] 赵俊彦 , 任崇巍 . 关于动车组故障对边图像检测系统的设计 [J]. 铁道机车车辆 , 2011,31(6): 19-22. ZHAO J Y. Design of EMU Fault Imagine Edge Detection System [J]. Railway Locomotive & Car, 2011,31(6):19-22.
    [4] 周景超,陈 锋 . 车牌字符分割的研究和实现 [J]. 计算机工程,2006,32(5):239-243. ZHOU J C. Study and Implementation of Vehicle Plate Characteristics Segment[J]. Computer Engineering, 2006, 32(5):239-243.
    [5] 王少杰,朱志刚 . 货运列车车型车号自动分割和识别算法 [J]. 模式识别与人工智能,1998,11(3):328-334. WANG S J. Automatic segmentation and recognition of freight train characters[J]. Pattern Recognition and Artificial Intelligence, 1998, 11(3): 328-334.
    [6] 刘祖胜,方 凯,刘硕研 . 用于动车组故障检测的图像识别算法 [J]. 铁路计算机应用 , 2015,12(24):1-4. LIU Z S. Image recognition algorithm for EMU trouble detection[J]. Railway Computer Application. 2015,12(24): 1-4.
    [7] 陈春雷,王阳萍 . 基于视频列车车号识别系统的研究 [J]. 兰州交通大学学报 . 2007,26(6):99-103. CHEN C L. Research on Recognition System of Train Character Based on Video[J]. Journal of Lanzhou Jiaotong University, 2007, 26(6).
    [8] YU Z. Object Matching Using Deformable Templates [J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1996,18(3):267-278.
    [9] 陈 智 . 图像匹配技术研究 [D]. 武汉 :华中师范大学, 2006. CHEN Z. Research on image matching technology [D]. Wuhan: Central China Normal University, 2006.
计量
  • 文章访问数:  111
  • HTML全文浏览量:  1
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-07
  • 刊出日期:  2016-05-24

目录

    /

    返回文章
    返回