• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

一种基于改进BP神经网络的重载列车驾驶曲线算法研究

谭力天, 黄友能, 李玲玉

谭力天, 黄友能, 李玲玉. 一种基于改进BP神经网络的重载列车驾驶曲线算法研究[J]. 铁路计算机应用, 2016, 25(5): 1-5.
引用本文: 谭力天, 黄友能, 李玲玉. 一种基于改进BP神经网络的重载列车驾驶曲线算法研究[J]. 铁路计算机应用, 2016, 25(5): 1-5.
TAN Litian, HUANG Youneng, LI Lingyu. Driving curve algorithm for heavy haul train based on improved BP Neural Network[J]. Railway Computer Application, 2016, 25(5): 1-5.
Citation: TAN Litian, HUANG Youneng, LI Lingyu. Driving curve algorithm for heavy haul train based on improved BP Neural Network[J]. Railway Computer Application, 2016, 25(5): 1-5.

一种基于改进BP神经网络的重载列车驾驶曲线算法研究

基金项目: 北京市科技计划项目(D151100005815001);北京交通大学基本科研业务费资助项目(2015JBM013);神华集团科技项目(20140269)。
详细信息
    作者简介:

    谭力天,在读硕士研究生;黄友能,副教授。

  • 中图分类号: U260.138∶TP39

Driving curve algorithm for heavy haul train based on improved BP Neural Network

  • 摘要: BP神经网络被用于重载列车驾驶曲线研究,利用列车实际驾驶数据进行神经网络学习,描述列车制动时的非线性特性,对列车制动运行过程建模,获得列车制动减压目标值及缓解时间进行运动方程运算,最终获得重载列车驾驶曲线。通过在朔黄线线路上由该模型仿真得到的驾驶曲线和实际列车驾驶曲线比较,结果表明该方法研究驾驶曲线是有效的。
    Abstract: This article proposed driving curve algorithm for heavy haul train (HHT) based on improved BP Neural Network (NN), used the actual train driving data for NN learning, described the nonlinear characteristics when the train braked, set the NN model of train braking operation process. The decompression target value of train braking and release time were used for the calculation of motion equation to obtain the driving curve for HHT. By comparing the curve with the real data from the Shuo-Huang Heavy Haul Line, the results showed that the method was effective.
  • [1] 郜春海,陈德旺 . 基于模型选择和优化技术的自动驾驶制动模型辨识研究 [J]. 铁道学报,2011,33(10):57-60.
    [2] 董海荣,高 冰,宁 滨 . 列车自动驾驶调速系统自适应模糊控制 [J]. 动力学与控制学报,2010,8(1):87-91.
    [3] Lijun Zhang,Xiangtao Zhuan,Xiaohua Xia. Optimal Operation of Heavy Haul Trains using Model Predictive Control Methodology[C]. 2011 IEEE International Conference on Service Operations and Logistics and Informatics (SOLI), 2011,402-407.
    [4] 董海鹰,刘 洋,李 欣,等 . 基于模糊神经网络预测控制的高速列车 ATP 研究 [J]. 铁道学报,2013,35(8):58-62.
    [5] Khmelnitsky,E.. On an optimal control problem of train operation[J]. IEEE Transaction of Automatic Control,2000, 45:1257–1266.
    [6] Yufu Qin,Jun Peng,Xiaoyong Zhang. A Robust Fault Estimation Scheme for Heavy-haul Trains Equipped with ECP Brake Systems[C]. 2014 26th Chinese Control and Decision Conference (CCDC):2831-2836.
    [7] M. T. Hagan,H. B. Demuth,M. H. Beale. Neural Network Design[M]. Boston,MA: PWS,1996.
    [8] S. Haykin. Neural networks a Comprehensive Foundation[M]. Englewood Cliffs. NJ: Prentice-Hall,1999.
    [9] P. R. Gill,W. Murray,M. H. Wright. The LevenbergMarquardt method[M]. Practical Optimization. London,U.K.: Academic,1981:136–137.
    [10] D. E. Rumelhart,G. E. Hinton,R. J. Williams. Learning representations by back-propagating errors[J]. Nature, 1996(323): 533–536.
    [11] A. Bahar,C. Özgen,K. Leblebicioglu. Artificial neural network estimator design for the inferential model predictive control of an industrial distillation column[J]. Ind. Eng. Chem. Res., 2004(43): 6102–6111.
  • 期刊类型引用(2)

    1. 蒋杰,张征方,罗源,周黄标,熊佳远. 适应起伏坡道线路的重载列车运行曲线规划技术研究. 控制与信息技术. 2024(04): 28-35 . 百度学术
    2. 张俊甲,李延忠,马增强,任彬. 基于改进BP神经网络的列车脱轨系数预测方法. 国防交通工程与技术. 2017(01): 34-37 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  90
  • HTML全文浏览量:  1
  • PDF下载量:  61
  • 被引次数: 4
出版历程
  • 收稿日期:  2015-11-06
  • 刊出日期:  2016-05-24

目录

    /

    返回文章
    返回