• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

地铁屏蔽门与车门间异物自动检测技术

黄华文, 刘伟铭, 李军, 谭飞刚, 路新宇

黄华文, 刘伟铭, 李军, 谭飞刚, 路新宇. 地铁屏蔽门与车门间异物自动检测技术[J]. 铁路计算机应用, 2015, 24(12): 64-65.
引用本文: 黄华文, 刘伟铭, 李军, 谭飞刚, 路新宇. 地铁屏蔽门与车门间异物自动检测技术[J]. 铁路计算机应用, 2015, 24(12): 64-65.
HUANG Huawen, LIU Weiming, LI Jun, TAN Feigang, LU Xinyu. Automatic foreign object detection technology between PSD and subway doors[J]. Railway Computer Application, 2015, 24(12): 64-65.
Citation: HUANG Huawen, LIU Weiming, LI Jun, TAN Feigang, LU Xinyu. Automatic foreign object detection technology between PSD and subway doors[J]. Railway Computer Application, 2015, 24(12): 64-65.

地铁屏蔽门与车门间异物自动检测技术

详细信息
    作者简介:

    黄华文,工程师;刘伟铭,教授。

  • 中图分类号: U231.4∶TP39

Automatic foreign object detection technology between PSD and subway doors

  • 摘要: 目前,国内地铁大都由司机瞭望车尾处光带是否完整来判断车门与屏蔽门之间空隙是否存在异物,该方法误检率高。本文结合地铁车门与屏蔽门之间空隙的特点,从系统性能、安装维护等方面详细比较了目前可能用于地铁屏蔽门与列车之间异物自动检测技术,提出了基于机器视觉的地铁屏蔽门与车门间异物自动检测方法。试验结果证明,该方法具有检测准确率高、设备体积小、安装维护简单、成本低等特点,应用前景广阔。
    Abstract: Drivers always determine whether there is a foreign object between the door and the platform screen door(PSD) through checking the light bar’s completeness in the rear of the subway at Chinese subway. However, there is a big risk of false positives. Based on the characteristics of the gap between the subway door and PSD, the article made a detailed comparison of different foreign object automatic detection from the system performance, installation and maintenance, etc., proposed self-detection method based on machine vision between PSD and the door foreign object. Experimental results showed that the method was with the properties of high detection rate, the equipment was small, simple for installation and maintenance, and low cost.
  • [1] 杨丽杰. 地铁屏蔽门系统技术浅谈[J]. 铁道机车车辆,2002(2):29-31.
    [2] 邓远华, 宋瑞刚. 地铁站台“二门系统”防夹人事故措施探讨[J]. 沿海企业与科技,2010(10):43-44.
    [3] 王瑞峰, 杨子河, 孔维珍. 红外光幕在地铁屏蔽门障碍物探测中的研究[J]. 传感器与微系统, 2013, 32(3): 25-28.
    [4] Hai-hui C. Mechanism Design and Mechanics Model of the Platform Screen Doors for Subways [J]. Journal of South China University of Technology (Natural Science), 2004(4): 018.
    [5] 朱 宁. 地铁屏蔽门激光防护方案研究[J]. 中国高新技术企 业 , 2011( 19): 23-25.
    [6] Gall J, Lempitsky V. Class-specific hough forests for object detection[M]. London :Decision Forests for Computer Vision and Medical Image Analysis, 2013: 143-157.
    [7] 汤一平, 富吉勇, 陈耀宇. 基于全方位计算机视觉的遗留物检测系统 [J]. 计算机测量与控制,2010( 3): 517-519.
    [8] Redo-Sanchez A, Laman N, Schulkin B, et al. Review of Terahertz Technology Readiness Assessment and Applications[J].Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34
    (9): 500-518.
    [9] 同 磊, 朱力强, 余祖俊, 等. 基于车载前视摄像机的轨道异物检测[J]. 交通运输系统工程与信息, 2012,12(4):79-83.
    [10] 李 煜, 肖 刚. 机场跑道异物检测系统设计与研究[J]. 激光与红外, 2011, 41(8):909-915.
    [11] Hogeweg L, Sánchez C I, Melendez J, et al. Foreign object detection and removal to improve automated analysis of chest radiographs[J]. Medical physics, 2013, 40(7): 071901.
    [12] 沈阳西东控制技术有限公司. 地铁站台屏蔽门与列车门之间激光障碍物监测控制系统[P]. 中国:CN101463691B ,2013-03-20.
    [13] Shen J Q and Hau L C. Vehicle sensing method for detecting a pedestrian impact[P]. U.S : US7380633 B2 ,2006-2-14.
  • 期刊类型引用(3)

    1. 宋军杰,王云龙,姚慧. 城市轨道交通专用无线通信系统方案分析. 无线互联科技. 2020(13): 5-6 . 百度学术
    2. 禹翔. 城市轨道交通网络系统设计承载能力计算方法. 电子设计工程. 2019(21): 127-130+135 . 百度学术
    3. 赵铁舰. 铁路通信技术在客运专线的应用. 黑龙江科技信息. 2017(04): 223 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  281
  • HTML全文浏览量:  7
  • PDF下载量:  216
  • 被引次数: 4
出版历程
  • 收稿日期:  2015-03-12
  • 刊出日期:  2015-12-24

目录

    /

    返回文章
    返回