User credit profile integrating SOM Neural network and K-means clustering algorithm
-
摘要:
为提高现阶段基于K-Means聚类算法的用户信用画像模型的准确性和实时性,提出一种融合自组织映射(SOM,Self-Organizing Map)神经网络与K-Means聚类算法的改进方法。通过SOM对用户数据进行降维和特征提取,直接获得最优聚类数目后再用K-Means算法进行聚类分析。通过真实在线借贷平台数据对所提方法进行验证,结果表明,该方法可提升用户信用画像分析的质量,更好地满足金融数据分析中对实时管理和风险控制的要求,为金融机构提供精准的决策支持。
-
关键词:
- 用户信用画像 /
- SOM神经网络 /
- K-means聚类算法 /
- 时间复杂度 /
- 风险控制
Abstract:To improve the accuracy and real-time performance of user credit profile models based on K-Means clustering algorithm, this paper proposed an improved method that integrated Self Organizing Map (SOM) neural network with K-Means clustering algorithm. The paper used SOM to reduce dimensionality and extract features from user data, directly obtained the optimal number of clusters, and then used K-Means algorithm for clustering analysis, validated the proposed method through real online lending platform data. The results show that the proposed method can improve the quality of user credit profile analysis, better meet the requirements of real-time management and risk control in financial data analysis, and provide accurate decision support for financial institutions.
-
基于全球导航卫星系统(GNSS,Global Navigation Satellite System)的位移监测技术具有高精度、全天候、数据处理自动化等优势,在铁路基础设施安全监测方面的应用具有较大优势。但在正常运营期间,铁路线路周边处于封闭状态,造成铁路GNSS监测站(简称:监测站)安装完成后现场维护困难。因此,对监测站的GNSS观测数据质量提出了严格要求,在排查故障时,需要从数据角度进行分析,而不依赖于人员前往现场进行排查。GNSS观测数据的质量作为影响最终解算精度的重要因素之一,能有效反映监测设备在观测过程中存在的问题。
在现有的GNSS接收机(当将GNSS接收机用于监测用途时,一般称之为监测站)观测数据的质量分析中,数据质量指标有多种,评估方法各异 [1-2]。美国卫星导航系统与地壳形变观测研究大学联合体(UNAVCO,University NAVSTAR Consortium)研发的TEQC软件是广泛应用的GNSS数据质量分析软件之一[3],采用了数据完整率、多路径误差、周跳比、载噪比等数据指标;国际GNSS服务(IGS,International GNSS Service)组织在评价IGS基准站数据质量时,采用了观测数据数目、周跳比、L1多路径误差与L2多路径误差共4项数据指标[4];张宁等人[5]以数据完整率、多路径误差、信噪比和周跳比,结合可见卫星数、数据连续性统计做为数据指标,对国际GNSS服务(IGS,International GNSS Service)北京房山站的多系统GNSS观测数据进行了质量评估;程军龙等人[6]从载噪比、多路径误差及观测噪声3个方面评估了北斗三号全球卫星导航系统(简称:北斗三号)的观测数据质量,证明了北斗三号的观测数据比北斗二号区域卫星导航系统的观测数据的数据质量更高;Renhai Mu等人[7]及Houzhe Zhang等人[8]基于数据完整率、多路径误差、载波相位噪声等指标,分析了北斗三号观测数据的数据质量。
GNSS观测数据质量评价指标较多,而过多的指标并不能较好地提供有效信息,也有专家学者对此进行了研究。魏勇等人[9]使用TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)综合评价模型对IGS和国际GNSS监测评估系统(IGMAS,International GNSS Monitoring & Assessment System)的多处基准站的观测数据,从数据完整性、数据有效率、伪距多路径、信噪比及周跳比5个指标进行了综合分析,给出了数据质量评价结果。但TOPSIS综合评价模型得出的是一种相对评价,只对样本进行内部优劣评价,不同样本间评价结果不可比[10]。
综上,当前大部分研究都是针对地基增强基准站的原始观测数据进行分析,尚缺乏对监测站GNSS观测数据的质量分析,数据完整率、周跳比、多路径误差值等指标对GNSS观测数据的数据质量进行各项指标的单项评估[11],以及TOPSIS等方法的相对综合评估,存在一定局限。本文旨在综合数据完整率、多路径误差值、周跳比这3个常用的GNSS观测数据质量评价指标,基于监测站的GNSS观测数据,在多个数据质量评价指标与最终需要的坐标解算结果精度间建立预测模型,以预测的坐标解算精度作为监测站GNSS观测数据质量的评价标准,进行绝对性评价。
1 选取的GNSS观测数据质量指标
1.1 数据完整率
数据完整率是指在1个观测时段内、一定的采样率条件下,GNSS接收机实际观测到的历元数与理论应观测到的历元数的比值。公式为
$$ {{{D}}_{\text{I}}}{\text{ = }}\dfrac{{{N_{have}}}}{{{N_{expt}}}} \cdot 100{\text{% }} $$ (1) 其中,
${{{D}}_{\text{I}}}$ 为数据完整率;$ {N_{have}} $ 为实际观测的历元数;${N_{expt}}$ 为理论应观测到的历元数,数据完整率值最大为100%,数值越大说明当前观测时段内GNSS接收机实际观测历元数越多,观测环境和运行状态越好。1.2 多路径误差
GNSS接收机在接收直接来自于卫星的信号时,由于附近物体对信号的反射与折射,造成干涉信号与卫星信号叠加,形成合成信号,这种使观测值发生偏差的现象叫多路径效应。多路径效应对伪距和载波相位观测值都有一定的影响 [12-13],该效应导致的测距误差一般称为多路径误差。多路径误差一般采用伪距观测值与载波相位观测值的线性组合进行计算,计算接收到的2个频率信号的多路径误差,公式为
$$ \left\{ {\begin{array}{*{20}{c}} {MP1 = {\rho _1} - \dfrac{{{f_1}^2 + {f_2}^2}}{{{f_1}^2 - {f_2}^2}}{\varphi _1} + \dfrac{{2{f_2}^2}}{{{f_1}^2 - {f_2}^2}}{\varphi _2}} \\ {MP2 = {\rho _2} - \dfrac{{2{f_1}^2}}{{{f_1}^2 - {f_2}^2}}{\varphi _1} + \dfrac{{{f_1}^2 + {f_2}^2}}{{{f_1}^2 - {f_2}^2}}{\varphi _2}} \end{array}} \right. $$ (2) 其中,
$ MP $ 为多路径误差;$ \rho $ 为伪距观测量;$ f $ 为载波频率;$ \varphi $ 为载波相位观测量;$1、2$ 分别代表对应GNSS卫星的2个波段频率索引。多路径误差越小,说明GNSS接收机周围观测环境对信号反射与折射的影响越小。一般认为,当实际测量的MP1 > 0.35,MP2 > 0.45时,多路径效应对观测数据的精度影响不可忽略[14]。1.3 周跳比
发生周跳是指GNSS接收机在跟踪观测卫星时,由于环境遮挡或其他原因导致信号失锁,载波相位观测的整周计数不连续,进而发生跳跃的情况。周跳比是指GNSS接收机在一个观测时段内,载波观测值数与观测过程中发生周跳次数的比值,能有效反应载波相位观测值的质量情况。周跳情况可用周跳比表示,也可采用每千历元的周跳数CSR来表示,公式为
$$ CSR = \frac{{1\;000}}{{o/slps}} $$ (3) 式中,
$o$ 为载波观测值个数;$slps$ 为周跳次数。超过半数的IGS站的CSR平均值 < 5,即周跳比 > 200[15]。2 评价方法
本文采用多元线性回归方法中的岭回归分析法对监测站GNSS观测数据的多项数据质量指标进行分析,建立由数据质量指标至最终解算精度的预测模型,用于评价监测站的GNSS观测数据质量情况。
2.1 评价指标
2.1.1 指标选择
结合国内外GNSS数据质量分析软件常用的评价指标,同时,考虑到解算需要铁路GNSS监测参考站(简称:监测参考站)的参与,且监测站与监测参考站间的基线距离也是影响最终解算精度的重要因素之一,因此,本文选择监测站与监测参考站的数据完整率、多路径误差MP1、多路径误差MP2、周跳比,以及基线距离共9项指标进行综合评价。
2.1.2 评价指标数据处理
在基于岭回归分析法建模前,可对所选取的评价指标进行正向处理,保持评价指标的同趋势化。而选取的评价指标存在多路径误差及基线距离2项逆向指标,可对这2项评价指标通过取倒数的方法,转换为正向评价指标。
2.2 岭回归分析法
岭回归分析法是一种基于最小二乘估计(OLS,Ordinary Least Square Estimation)法的改进方法,通过放弃最小二乘估计法的无偏性,以损失部分信息、降低精度为代价,获取回归系数更为符合实际情况的方法,能够有效解决数据间多重共线性问题,降低多重共线性对模型稳定性的影响,且对因变量未来的走势做出较为准确和稳定的预测[16]。因本文选取的评价指标间存在较强的共线性,故采用岭回归分析法建立模型。
最小二乘估计法公式为
$$ \mathop {\boldsymbol{X}}\limits^ \wedge = {({{\boldsymbol{A}}^{\boldsymbol{T}}}{\boldsymbol{A}})^{ - 1}}{{\boldsymbol{A}}^{\boldsymbol{T}}}{\boldsymbol{L}} $$ (4) 式中,
$\mathop {\boldsymbol{X}}\limits^ \wedge$ 为最小二乘法的估计向量;${\boldsymbol{ A}}$ 为解释变量组成的系数矩阵;${\boldsymbol{L}}$ 为观测向量。但在多元线性回归时,矩阵${{\boldsymbol{A}}^{\boldsymbol{T}}}{\boldsymbol{A}}$ 可能因解释变量间存在相关性导致奇异,从而无法求逆。岭回归分析法公式为
$$ \mathop {\boldsymbol{X}}\limits^ \wedge = {({{\boldsymbol{A}}^{\boldsymbol{T}}}{\boldsymbol{A}} + k{\boldsymbol{I}})^{ - 1}}{{\boldsymbol{A}}^{\boldsymbol{T}}}{\boldsymbol{L}}{\text{ }}(k > 0) $$ (5) 式中,
$k$ 为岭系数;${\boldsymbol{I}}$ 为单位矩阵。岭回归在${{\boldsymbol{A}}^{\boldsymbol{T}}}{\boldsymbol{A}}$ 加上$k{\boldsymbol{I}}$ 后使得矩阵满秩,因此可逆。k越大,使得模型方差${({{\boldsymbol{A}}^{\boldsymbol{T}}}{\boldsymbol{A}} + k{\boldsymbol{I}})^{ - 1}}$ 越小,但最终估计值会更加偏离真实值,模型偏差越大,因此,岭回归分析法的关键在于找到一个合理的岭系数以平衡模型的方差和偏差。一般将$k$ 的初始值设为0,以一定的步长增大,并根据已有用于建模的样本数据,可得到不同$k$ 值时各解释变量的系数,即模型的回归系数,以此绘制岭迹曲线。当各个解释变量的回归系数都趋于稳定时的最小岭系数值即为最优岭系数。3 应用分析
3.1 实验数据选择
实验选取浩吉(浩勒报吉—吉安)重载铁路沿线一处边坡的GNSS监测工点,工点布设有1处监测参考站及8处监测站,用于监测该边坡三维坐标的变化值。其中,监测参考站设立在边坡旁一处稳固位置,8处监测站均设立在边坡易发生形变的位置。
本文选取8处监测站(290D、290F、2911、2912、2913、2914、2915、2916)的7个观测时段(即观测时段a、b、c、d、e、j、n,每时段时长为1 h)的GNSS观测数据进行分析,将其中5个连续观测时段(a~e)的GNSS观测数据作为样本数据用于建立模型,余下2个间隔的观测时段(j、n)的GNSS观测数据用于模型校验。
3.2 实验数据建模
根据2.1中选择的评价指标,将监测站数据完整率(
$ {x_1} $ )、正向处理后的监测站多路径误差$MP1'$ ($ {x_2} $ )和$MP2'$ ($ {x_3} $ )、监测站周跳比($ {x_4} $ )、监测参考站数据完整率($ {x_5} $ )、正向处理后的监测参考站多路径误差$MP1'$ ($ {x_6} $ )和$MP2'$ ($ {x_7} $ )、监测参考站周跳比($ {x_8} $ )、正向处理后的基线距离($ {x_9} $ )这9个解释变量作为自变量。将表征监测站最终坐标解算误差的均方根(RMS,Root Mean Square)(即坐标解算精度)作为岭回归分析法的因变量,进行建模。(1)通过自动化形变监测解算软件HCMonitor,可解算得到监测站三维坐标结果的RMS,使用GNSS观测数据质量分析软件TEQC处理得到所有8个监测站及监测参考站7个时段的观测数据完整率、MP1、MP2及周跳比值。由此,得到模型的所有因变量和自变量数据。由于篇幅有限,本文只列出8个监测站及1个监测参考站在a时段的观测数据质量分析结果,如表1所示。
表 1 监测站观测数据质量分析成果监测站和监测参考站 观测数据完整率 MP1 MP2 周跳比 基线距离/m RMS/mm 监测站290Da 96 0.42 0.67 72 93.7 10.4 监测站290Fa 99 0.42 0.94 279 67.1 12.3 监测站2911a 95 0.39 0.54 327 37.3 11.6 监测站2912a 99 0.4 0.51 153 93.9 10.1 监测站2913a 97 0.39 0.6 377 73.7 9.9 监测站2914a 100 0.39 0.53 3099 65.8 9.2 监测站2915a 100 0.29 0.47 3307 158.5 8.4 监测站2916a 97 0.81 0.63 121 199.1 17.1 监测参考站 99 0.31 0.52 3061 — — (2)为证明选取的评价指标间存在较强的共线性,对8个监测站、5个检测时段的观测数据质量分析指标进行共线性诊断,采用特征根判定法[17],结果如表2所示。
表 2 共线性诊断结果维 特征根 条件指数 方差比例 (常量) $ {x_1} $ $ {x_2} $ $ {x_3} $ $ {x_4} $ $ {x_5} $ $ {x_6} $ $ {x_7} $ $ {x_8} $ $ {x_9} $ 1 9.17 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.51 4.25 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.00 3 0.20 6.81 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.52 4 0.06 12.11 0.00 0.00 0.05 0.05 0.11 0.00 0.00 0.00 0.01 0.03 5 0.04 15.38 0.00 0.00 0.25 0.10 0.09 0.00 0.00 0.00 0.00 0.01 6 0.02 21.42 0.00 0.00 0.55 0.69 0.00 0.00 0.00 0.00 0.00 0.34 7 0.01 43.66 0.00 0.03 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.02 8 0.00 131.68 0.00 0.19 0.03 0.02 0.09 0.01 0.01 0.00 0.00 0.04 9 0.00 137.25 0.00 0.77 0.02 0.11 0.21 0.00 0.00 0.01 0.01 0.04 10 0.00 1788.96 1.00 0.00 0.03 0.02 0.00 0.99 0.99 0.99 0.97 0.00 根据特征根判定法原理,当所有特征根中有至少1个特征根接近于0,则说明变量间一定存在多重共线性,同时,当条件指数大于100时,认为变量间存在强共线性关系。表2中3个特征根接近于0,且最大的条件指数为1788.96,远大于100,表明这些自变量间存在着多重共线性问题,适合用岭回归分析法预测模型进行数据处理。
(3)岭回归分析法预测模型方程为
$$ \begin{aligned} & \\ P_{\rm{RMS}} = &{a_1}{x_1}{\text{ + }}{a_2}{x_2} + {a_3}{x_3} + {a_4}{x_4}{\text{ + }}{a_5}{x_5}{\text{ + }}\\&{a_6}{x_6}{\text{ + }}{a_7}{x_7}{\text{ + }}{a_8}{x_8} + {a_9}{x_9} + b \end{aligned} $$ (6) 式中,
${a}_{n}$ 为自变量系数,n=1,2,3,···,9;$ b $ 为常数。为确定模型岭系数,需要绘制岭迹图,如图1所示。由图1可知,当岭系数≥0.05时,各自变量回归系数值趋向稳定,因此,本文将岭系数选定为0.05。
(4)选定岭系数后,可得到模型自变量系数如表3所示。
表 3 模型自变量系数自变量系数 $ {a_1} $ $ {a_2} $ $ {a_3} $ $ {a_4} $ $ {a_5} $ $ {a_6} $ $ {a_7} $ $ {a_8} $ $ {a_9} $ $ b $ 数值 −0.036 −3.045 1.03 0.001 −0.172 −7.081 2.586 0.002 50.941 49.226 代入公式(6)中可得
$$ \begin{aligned} P_{\rm{RMS}} =& - 0.036\cdot{x_1}{\text{ }} - 3.045\cdot{x_2} + {\text{ }}1.030\cdot{x_3} +\\ &{\text{ }}0.001\cdot{x_4} - 0.172\cdot{x_5} {\text{ }} - 7.081\cdot{x_6}{\text{ }} +\\ & {\text{ }}2.586\cdot{x_7} +{\text{ }}0.002\cdot{x_8}{\text{ }} + {\text{ }}50.941\cdot{x_9} + 49.226 \\ \end{aligned} $$ (7) (5)使用统计分析软件SPSS对建立的模型进行拟合优度的检验,模型的均方根误差为1.372 mm, p 值小于显著性水平(0.01),说明建立的岭回归分析法预测模型总体显著,即模型各自变量对因变量的共同影响具有显著性。
3.3 数据验证
本文使用浩吉铁路边坡监测工点另外2个观测时段(j,n)的GNSS观测数据进行模型验证。将8台监测站在这2个观测时段的GNSS观测数据的数据完整率、多路径误差、周跳比、基线距离等数据代入公式(7)中,可得到模型预测的RMS,对比实际HCMonitor软件解算后得到的RMS,可得到模型的预测误差,如表4所示。根据表4计算得到,模型预测误差的均方根为1.1 mm,相对误差平均为13%,优于GNSS解算的常规误差3~5 mm,模型验证误差如图2所示。
表 4 模型验证误差表GNSS观测数据 HCMonitor 软件解算
得到的RMS/mm本文模型预测值/mm 误差值/mm 290Dj 7.8 8.1 -0.3 290Fj 7.1 8.7 −1.6 2911j 6.1 5.4 0.7 2912j 7.2 6.6 0.6 2913j 7.7 8.3 −0.6 2914j 6.0 4.9 1.1 2915j 5.6 4.2 1.4 2916j 6.6 8.1 −1.5 290Dn 8.3 9.7 −1.4 290Fn 8.6 9.9 −1.3 2911n 11.0 10.0 1.0 2912n 8.8 10.3 −1.5 2913n 10.1 10.6 −0.5 2914n 8.7 9.6 −0.9 2915n 7.4 8.6 −1.2 2916n 13.0 12.2 0.8 综上,基于建立的岭回归分析法预测模型,能够通过监测站GNSS观测数据质量的数据完整率、多路径误差及周跳比等指标值,较准确地预测到最终的坐标解算精度,并可以坐标解算精度值为综合评价指标,实现对监测站GNSS观测数据质量的绝对性评价,即不同监测站观测数据质量间的评价结果可比,不同观测时段间GNSS观测数据质量的评价结果可比,不同监测工点间观测数据质量的评价结果也可比。
4 结束语
本文综合考虑了GNSS观测数据质量分析的常用指标及铁路基础设施形变监测的特点,选定了多个指标,选取一处边坡监测工点的实际数据建立了岭回归分析法预测模型,检验了模型的合理性。同时,通过测试数据验证了模型从监测站GNSS观测数据质量指标至最终坐标解算精度间预测的可靠性,以坐标解算精度值为综合评价指标,可对监测设备观测数据质量进行绝对性评价。并且,此评价方法不受监测对象类型的影响,可用于评价铁路边坡、路基、桥梁等众多对象形变监测的GNSS观测数据。但是,采用此种评价方式也存在一些弊端,即在不同的环境或工点的情况下,需要获取新的样本数据进行重新建模。
-
表 1 数据集字段说明(部分)
字段名称 字段含义 数据说明 loan_amnt 贷款金额 借款人的贷款金额 annual_inc 年收入 借款人的自报年收入 delinq_2yrs 逾期次数 过去2年内逾期30天以上的次数 open_acc 未结信用额度数量 借款人未结信用额度的数目 Grade 用户信用等级 按风险递增分级 Term 贷款期限 分36个月和60个月 tot_coll_amt 欠款金额 用户所有欠款账户所欠总金额 表 2 特征分组情况
组别 特征 特征字段 第1组 贷款的基本属性和借款人的还款情况 recoveries: 回收金额 total_rec_int: 总利息 revol_util: 循环利用率 emp_title: 借款人职位 application_type: 申请类型 term_range: 贷款期限范围 acc_now_delinq: 逾期账户数 第2组 借款人的信用历史和财务稳定性 dti: 债务收入比 annual_inc: 年收入 total_pymnt: 总还款额 grade_range: 信用等级 emp_length_range: 工作年限 delinq_2yrs: 过去2年逾期次数 home_ownership_range: 住房所有权 第3组 借款人的信用状况和贷款条件 int_rate: 贷款利率 policy_code: 政策代码 addr_state: 地址所在州 tot_coll_amt: 总欠款金额 open_acc: 未结账户数量 revol_bal: 循环信用余额 pymnt_plan_range: 还款计划 第4组 贷款的特征、借款人的概况和还款计划 pub_rec: 公共记录 loan_amnt: 贷款金额 emp_title: 借款人的职位 installment: 分期付款额 tot_cur_bal: 目前总余额 term_range: 贷款期限范围 verification_status_range: 收入范围 表 3 特征分类预测结果
组别 准确率 AUC 第1组 94.70% 0.6732 第2组 98.10% 0.8324 第3组 92.42% 0.5082 第4组 92.71% 0.5235 表 4 针对还款意愿的聚类数目及轮廓系数
聚类数目 轮廓系数 2 0.4834 3 0.5256 4 0.4962 5 0.5183 表 5 针对还款能力的聚类数目及轮廓系数
聚类数目 轮廓系数 2 0.4250 3 0.3732 4 0.4754 5 0.4253 表 6 用户信用标签(部分)
用户ID 违约概率 贷款额度 信用等级 还款意愿 还款能力 44521 中 中 高 中 良 23423 高 中 低 低 高 678565 低 高 中 高 中 -
[1] 张 华,王 丽,李 强. 金融行业中用户画像的构建及其在信贷风险评估中的应用研究[J]. 金融科技时代,2020,7(2):45-54. [2] 李 明,周 健,张 伟. 基于大数据的用户画像在个性化金融服务中的应用[J]. 经济管理,2021,39(4):112-120. [3] 蔡晓妍,戴冠中,杨黎斌. 谱聚类算法综述[J]. 计算机科学,2008,35(7):14-18. DOI: 10.3969/j.issn.1002-137X.2008.07.004 [4] 邓 祥,俞 璐. 深度聚类算法综述[J]. 通信技术,2021,54(8):1807-1814. DOI: 10.3969/j.issn.1002-0802.2021.08.001 [5] 周广利. 大数据背景下商业银行信贷安全管理策略研究——评《风控:大数据时代下的信贷风险管理和实践》[J]. 中国安全科学学报,2021,31(2):187-188. [6] 张秉楠,李德玉. 融合协同过滤的自组织神经网络多样化产品推荐[J/OL]. 山西大学学报(自然科学版):1-10[2024-06-21]. https://doi.org/10.13451/j.sxu.ns.2023068. [7] 郭伟业,赵晓丹,庞英智,等. 数据挖掘中SOM神经网络的聚类方法研究[J]. 情报科学,2009,27(6):874-876,893. [8] 姚 旭,王晓丹,张玉玺,等. 特征选择方法综述[J]. 控制与决策,2012,27(2):161-166,192. [9] 普雪飞. P2P网贷信用风险量化评估研究——以Lending Club平台为鉴[D]. 成都:电子科技大学,2020. [10] 薛 琦,罗鄂湘. 基于机器学习的银行个人信用风险评估研究[J]. 建模与仿真,2023,12(4):3747-3755. [11] 杨俊闯,赵 超. K-Means聚类算法研究综述[J]. 计算机工程与应用,2019,55(23):7-14,63. -
期刊类型引用(3)
1. 刘彦. 农业科学院所无形资产评估方法研究. 现代商业研究. 2024(05): 23-25 . 百度学术
2. 刘彦. 农业类科研院所中无形资产的评估方法研究. 商讯. 2024(10): 13-16 . 百度学术
3. 丁传琛. 数字经济背景下铁路数据资产定价方法研究. 铁道经济研究. 2024(06): 57-64 . 百度学术
其他类型引用(0)