• 查询稿件
  • 获取最新论文
  • 知晓行业信息

基于CatBoost的空铁联运中转城市推荐研究

Research on recommendation of transit cities for air-rail intermodal transport based on CatBoost

  • 摘要: 随着交通网络的快速发展,越来越多的旅客选择空铁联运出行,对空铁联运中转城市推荐方法提出了更高的要求。文章设计了符合空铁联运中转城市数据特点的数据不平衡处理方法,采用能够处理类别型特征的CatBoost算法构造基准模型,在2个不同数据分布的测试集上对该模型进行评估,模型准确率均超过85%。通过与其他算法的对比分析,证明了该模型具有较好的稳定性和更优的性能,提高了空铁联运中转城市的推荐效果,可更好地满足旅客的出行需求;通过对特征贡献度的分析发现,下单人的姓名特征会对模型预测带来影响,从而进一步提高空铁联运中转城市的个性化推荐效果。

     

    Abstract: With the rapid development of transportation networks, more and more passengers are choosing air-rail intermodal transportation, which puts forward higher requirements for the recommendation method of air-rail intermodal transit cities. This paper designed a data imbalance handling method that conformed to the characteristics of air-rail intermodal transit city data. The CatBoost algorithm, which can handle categorical features, was used to construct a benchmark model. The model was evaluated on two different test sets with different data distributions, and the accuracy of the model exceeded 85%. Through comparative analysis with other algorithms, it was proven that this model had good stability and better performance, improved the recommendation effect of air-rail intermodal transit cities and better met the travel needs of passengers. Through the analysis of feature contribution, it was found that passenger name characteristics could have an impact on model prediction, which could further improve the personalized recommendation effect of air-rail transit cities.

     

/

返回文章
返回