• 查询稿件
  • 获取最新论文
  • 知晓行业信息

基于EMD-AVOA-BP的逆变器故障诊断方法

Inverter fault diagnosis method based on EMD-AVOA-BP

  • 摘要: 以CRH3C型动车组逆变器中的绝缘栅双极型晶体管(IGBT,Insulated Gate Bipolar Transistor)双管开路故障为研究对象,提出了一种基于非洲秃鹫算法(AVOA,African Vultures Optimization Algorithm)和优化的反向传播(BP,Back Propagation)神经网络的逆变器故障诊断方法。在Simulink中搭建列车逆变器的控制模型,取得故障电流;采用经验模态分解(EMD, Empirical Mode Decomposition)对电流信号进行去噪和故障特征提取,再利用AVOA对BP神经网络进行优化,实现了对列车逆变器IGBT双管开路故障的诊断。与传统方法进行对比可知,该方法具有更高的精准度,在测试集中其精准度达到100%。

     

    Abstract: This paper took the open circuit fault in Insulated Gate Bipolar Transistor (IGBT) dual transistors in CRH3C EMU inverter as the research object, proposed an inverter fault diagnosis method based on the African Vultures Optimization Algorithm (AVOA) and an optimized Back Propagation (BP) neural network. The paper built a control model for train inverters in Simulink and obtained faulty electric current, used Empirical Mode Decomposition (EMD) to denoise and extract fault features from the electric current signal, and then used AVOA to optimize the BP neural network, implemented the diagnosis of open circuit faults in IGBT dual transistors of train inverters. Compared with traditional methods, this method has higher accuracy with an accuracy of 100% in the test set.

     

/

返回文章
返回