• 查询稿件
  • 获取最新论文
  • 知晓行业信息

云平台的负载预测及弹性伸缩方案研究

Load prediction and elastic scaling solutions for cloud platforms

  • 摘要: 为提高云平台的性能和资源利用率,文章提出一种基于ARMA-CNN-SVR的负载预测组合模型,通过融合多种预测模型的优点,提高预测云平台资源使用情况的准确率。基于该负载预测组合模型,进一步优化了弹性伸缩策略,有效解决资源调整的滞后性问题,增强了云平台的主动性和智能性,显著提升了资源利用率和服务质量。

     

    Abstract: To improve the performance and resource utilization rate of cloud platforms, this paper proposed a load prediction combination model based on ARMA-CNN-SVR, improved the accuracy of predicting cloud platform resource usage by integrating the advantages of multiple prediction models. Based on this load forecasting combination model, the paper further optimized the elastic scaling strategy, effectively solved the lag problem of resource adjustment, enhanced the initiative and intelligence of the cloud platform, and significantly improved resource utilization rate and service quality.

     

/

返回文章
返回