Fault identification method for vehicle suspension system based on CNN-LSTM
-
摘要: 高速铁路车辆(简称:车辆)运行条件恶劣多变,车辆悬挂系统的可靠性关系到行车安全和乘坐舒适性。当车辆的悬挂系统发生故障时,振动信号呈现非线性、非平稳的特征。为此,提出了一种基于卷积神经网络(CNN,Convolutional Neural Network)−长短时记忆(LSTM,Long Short-Term Memory)模型的车辆悬挂系统故障识别方法。通过SIMPACK平台建立了包含悬挂系统的车辆−轨道耦合动力学模型,获得了车辆系统各部件在健康状态及各类故障状态下的振动信号;以与故障元件关联部件的振动加速度信号作为模型输入,通过构建的CNN-LSTM模型对时序信号进行特征提取和分类预测,进而实现对车辆悬挂系统的故障识别;通过构建不同工况的故障数据集对该方法进行评估。试验结果表明,该方法在速度等级相同的情况下,故障识别准确率可达98%;在速度等级不同的情况下,故障识别准确率可达99%,验证了该方法的有效性。Abstract: The operating conditions of high-speed vehicles were harsh and changeable, and the reliability of suspension system was related to the safety and riding comfort of trains. When the suspension system of the high-speed vehicles fails, the vibration signal was non-linear and non-stationary. Therefore, this paper proposeded a fault identification method for vehicle suspension system based on Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) model. The paper established a vehicle track coupling dynamic model with suspension system on the SIMPACK platform, and obtained vibration signals of various components of the vehicle system under healthy and various fault states, and took the vibration acceleration signal of the components associated with the faulty component as the input of the model, through the construction of a CNN-LSTM model, extracted features and predicted classification of time-series signals, thereby achieved fault recognition of the vehicle suspension system, evaluated the method by constructing fault datasets for different operating conditions. The experimental results showed that the fault recognition accuracy of the method can reach up to 98 % under the same speed level, and the fault recognition accuracy can reach up to 99 % under different speed levels, which verifies the effectiveness of the method.
-
-
表 1 CNN-LSTM模型参数设定
编号 网络层 卷积核大小 通道数 步长 网络层输出 1 卷积层1 3*1 16 1*1 16*300 2 卷积层2 3*1 32 1*1 32*300 3 卷积层3 3*1 64 1*1 64*300 4 池化层 3*1 64 2*2 64*150 5 LSTM - - - 128 6 全连接层1 - 64 - 64 7 全连接层2 - 3 - 3 -
[1] 郭凤林. 基于机器学习的高速列车减振器故障识别与预测方法研究[D]. 北京:北京交通大学,2021. [2] 潘彦君. 高速车辆空气弹簧悬挂系统动力学及故障影响分析[D]. 兰州:兰州交通大学,2021. [3] 刘泉龙. 高速动车悬挂系统的故障特征识别研究[D]. 成都:西南交通大学,2015. [4] 王晓樯. 动车组抗蛇行减振器故障诊断方法研究[D]. 北京:北京交通大学,2022. [5] 苏宇婷,姚 琦,王昌冬,等. 高速列车监测数据处理及故障诊断[J]. 铁道车辆,2022,60(1):16-22. [6] 李晓. 基于信息融合的高速列车转向架故障诊断[D]. 成都:西南交通大学,2015. [7] 李昌喜. 基于变分模态分解的高速列车转向架故障诊断[D]. 成都:西南交通大学,2018. [8] 刘佳龙. 基于数据驱动的高速列车转向架故障诊断与健康预测研究[D]. 沈阳:东北大学,2020. [9] Lawrence S, Giles C L, Tsoi A C, et al. Face recognition: a convolutional neural-network approach[J]. IEEE Transactions on Neural Networks, 1997, 8(1): 98-113. DOI: 10.1109/72.554195
[10] Cen J, Yang Z H, Liu X, et al. A review of data-driven machinery fault diagnosis using machine learning algorithms[J]. Journal of Vibration Engineering & Technologies, 2022, 10(7): 2481-2507.
-
期刊类型引用(6)
1. 苗守庭,景晓志,冉泽宇,张志强,于茜,李红艳. 数字人民币智能合约在铁路客票+业务支付结算的应用研究. 铁道运输与经济. 2024(03): 125-133 . 百度学术
2. 王宇嘉,贾永刚,牟宏基,孙玉明,郑铎,李思达. 铁路客运服务标准及规章体系构建研究. 铁道运输与经济. 2024(06): 42-47+80 . 百度学术
3. 王宁,柴雪松,李健超,马学志,茅宇琳. 高速铁路无砟轨道典型伤损图谱的设计研究. 铁道建筑. 2023(06): 1-6 . 百度学术
4. 张丁荣,王恪铭,冯心妍. 基于知识图谱和故障树的高速铁路事故致因分析. 铁路计算机应用. 2023(07): 14-18 . 本站查看
5. 孔庆玮,苗茁,冯小芳,杨国柱,龙勋. 基于知识图谱的高速铁路客运调度命令闭环管理方案研究. 铁道运输与经济. 2023(10): 89-98 . 百度学术
6. 郭奕聪,胡维,周政,刘唯佳. 基于知识图谱的铁路企业智能督办系统研究. 铁路计算机应用. 2023(10): 27-31 . 本站查看
其他类型引用(1)