• 查询稿件
  • 获取最新论文
  • 知晓行业信息

基于TF-IDF加权朴素贝叶斯算法的ATP车载设备测试案例分类研究

Classification of ATP on-board equipment test cases based on TF-IDF weighted Naive Bayesian algorithm

  • 摘要: 针对列车超速防护(ATP,Automatic Train Protection)系统车载设备测试案例分类存在的工作量大、效率低且准确性不高等问题,提出了将词频—逆文档频率(TF-IDF,Term Frequency-Inverse Document Frequency)与朴素贝叶斯算法相结合,应用于测试案例分类的方案。利用TF-IDF算法筛选特征词及权重,对朴素贝叶斯算法进行加权处理,并基于实验室现有ATP车载设备的测试案例进行验证。实验结果表明,文章的特征词提取及测试案例分类方法具有较高的准确性。

     

    Abstract: Aiming at the problems of heavy workload, low efficiency and low accuracy in the classification of test cases of on-board equipment of ATP (Automatic Train Protection) system, this paper proposed a scheme that combined TF-IDF (Term Frequency Inverse Document Frequency) with Naive Bayesian algorithm to classify test cases. The paper used TF-IDF algorithm to filter feature words and weights, and weighted Naive Bayesian algorithm, which was verified based on the test cases of existing ATP on-board equipment in the laboratory. The experiment results show that the method of feature word extraction and test case classification has high accuracy.

     

/

返回文章
返回