• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

基于深度学习的铁路客站视频融合智能监控系统的图像处理优化技术研究

何志超, 范余华, 秦川, 沈斌涛

何志超, 范余华, 秦川, 沈斌涛. 基于深度学习的铁路客站视频融合智能监控系统的图像处理优化技术研究[J]. 铁路计算机应用, 2022, 31(7): 81-86. DOI: 10.3969/j.issn.1005-8451.2022.07.15
引用本文: 何志超, 范余华, 秦川, 沈斌涛. 基于深度学习的铁路客站视频融合智能监控系统的图像处理优化技术研究[J]. 铁路计算机应用, 2022, 31(7): 81-86. DOI: 10.3969/j.issn.1005-8451.2022.07.15
HE Zhichao, FAN Yuhua, QIN Chuan, SHEN Bintao. Image processing optimization technology of railway passenger station video fusion intelligent monitoring system based on deep learning[J]. Railway Computer Application, 2022, 31(7): 81-86. DOI: 10.3969/j.issn.1005-8451.2022.07.15
Citation: HE Zhichao, FAN Yuhua, QIN Chuan, SHEN Bintao. Image processing optimization technology of railway passenger station video fusion intelligent monitoring system based on deep learning[J]. Railway Computer Application, 2022, 31(7): 81-86. DOI: 10.3969/j.issn.1005-8451.2022.07.15

基于深度学习的铁路客站视频融合智能监控系统的图像处理优化技术研究

基金项目: 中国铁路上海局集团有限公司科研开发课题项目(2021148)
详细信息
    作者简介:

    何志超,正高级工程师

    范余华,高级工程师

  • 中图分类号: U293.2 : TP39

Image processing optimization technology of railway passenger station video fusion intelligent monitoring system based on deep learning

  • 摘要: 针对复杂铁路客站现场全景视频高维特征缺乏、融合匹配不准确等问题,提出一种基于深度学习的铁路客站视频融合智能监控系统的图像处理优化技术。文章通过尺度不变特征变换算法检测出图像关键点,利用卷积神经网络进行高维特征提取,对错配点使用随机抽样一致性算法进行剔除,并对虚影问题进行了优化以获得更好的细节效果。提出的图像处理优化技术已应用于连云港—镇江高速铁路扬州东站。应用结果表明,该技术能有效防止图片失真,获得更好的拼接效果。
    Abstract: In view of the lack of high-dimensional features and inaccurate fusion and matching of panoramic video of complex railway passenger station, this paper proposed an image processing optimization technology of railway passenger station video fusion intelligent monitoring system based on deep learning. In this paper, scale invariant feature transformation algorithm was used to detect the key points of the image, convolution neural network was used to extract the high-dimensional features, random sampling consistency algorithm was used to eliminate the mismatch points, and the phantom problem was optimized to obtain better details effect. The proposed image processing optimization technology has been applied to Yangzhou East Station of Lianyungang-Zhenjiang high-speed railway. The application results show that this technology can effectively prevent image distortion and obtain better mosaic effect.
  • 图  1   神经网络结构

    图  2   SIFT特征点确定过程

    图  3   整体匹配算法流程

    图  4   RANSAC算法流程

    图  5   虚影去除算法流程

    图  6   待匹配图像

    图  7   传统方案拼接图像

    图  8   本文方案拼接图像

  • [1] 王 娟,师 军,吴宪祥. 图像拼接技术综述 [J]. 计算机应用研究,2008,25(7):1940-1947. DOI: 10.3969/j.issn.1001-3695.2008.07.005
    [2] 王跃军,易 力. 基于三维场景的视频融合技术在电厂智能巡视系统中应用的研究 [J]. 中国设备工程,2021(3):123-125.
    [3]

    Rublee E, Rabaud V, Konolige K, et al. ORB: An efficient alternative to SIFT or SURF[C]//2011 International conference on computer vision. Barcelona, Spain : IEEE, 2011: 2564-2571.

    [4]

    Liu Z, Li Z, Zhang J, et al. Euclidean and Hamming Embedding for Image Patch Description with Convolutional Networks[C]// IEEE Conference on Computer Vision and Pattern Recognition 2016 (CVPR 2016). Las Vegas, NV, USA: IEEE, 2016.

    [5]

    Simo-Serra E, Trulls E, Ferraz L, et al. Discriminative learning of Deep Convolutional Feature Point Descriptors[C]// IEEE International Conference on Computer Vision. Nanchang, China: IEEE, 2016.

    [6] 王红尧,吴佳奇,林 松,等. 矿井多视角图像拼接方法研究 [J]. 工矿自动化,2021,47(10):27-32.
    [7]

    Zagoruyko S, Komodakis N. Learning to Compare Image Patches via Convolutional Neural Networks[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015.

    [8]

    Han X, Leung T, Jia Y, et al. MatchNet: Unifying feature and metric learning for patch-based matching[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015.

    [9]

    Balntas V, Johns E, Tang L, et al. PN-Net: Conjoined Triple Deep Network for Learning Local Image Descriptors [J]. arXivpreprint arxiv:1601.05030, 2016.

    [10]

    Brown M, Hua G, Winder S. Discriminative learning of local image descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1): 43-57. DOI: 10.1109/TPAMI.2010.54

    [11]

    Kumar B G, Carneiro G, Reid I. Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by Minimising Global Loss Functions[C]// IEEE Conference on Computer Vision and Pattern Recognition 2016 (CVPR 2016). Las Vegas, NV, USA: IEEE, 2016.

    [12] 于俊清,吴泽斌,吴 飞,等. 多媒体工程:2016——图像检索研究进展与发展趋势 [J]. 中国图象图形学报,2017,22(11):1467-1485. DOI: 10.11834/jig.170503
    [13]

    Zhang G, Zhi Z, Zhang S, et al. SIFT Matching with CNN Evidences for Particular Object Retrieval [J]. Neurocomputing, 2017, 238(238): 399-409.

    [14] 魏利胜, 周圣文. 新型优化SIFT的图像快速配准方法研究[J]. 计算机工程与应用, 2015, 51(5): 167-171.
    [15]

    Dubey S R, Chakraborty S. Average biased ReLU based CNN descriptor for improved face retrieval [J]. Multimedia Tools and Applications, 2021, 80(15): 23181-23206. DOI: 10.1007/s11042-020-10269-x

    [16] 赵迪迪,李加慧,谭奋利,等. 基于分布度量和显著性信息的遥感图像拼接 [J]. 激光与光电子学进展,2022,59(4):121-129.
    [17] 俞 娜. 多摄像头协同的运动目标跟踪方法研究[D]. 桂林: 桂林理工大学, 2021.
    [18] 刘 震. 一种基于深度学习的多曝光高动态范围成像方法 [J]. 现代计算机,2021(6):91-94.
    [19] 李佳骏. 基于局部特征的图像与点云配准研究[D]. 大连: 大连理工大学, 2021.
  • 期刊类型引用(3)

    1. 姚倩,宋晶,戚建淮. 基于网络行为的强制访问技术在铁路客票系统中的应用. 通信技术. 2022(01): 122-126 . 百度学术
    2. 李晋峰. 虚拟局域网IP地址访问控制方法研究. 自动化与信息工程. 2022(04): 18-21 . 百度学术
    3. 余超,雷雳. 铁路移动终端安全管控方案探讨. 高速铁路技术. 2022(05): 10-13+30 . 百度学术

    其他类型引用(1)

图(8)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  60
  • PDF下载量:  58
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-02-09
  • 网络出版日期:  2022-08-12
  • 刊出日期:  2022-08-07

目录

    /

    返回文章
    返回