Preliminary study on multimodal journey planning based on MaaS + intelligent service platform of China railway ticketing and reservation system
-
摘要: 多模式行程规划是中国智能高速铁路2.0运营技术的重要组成部分,是促进客运服务高质量发展和多种交通融合发展的关键技术手段。文章借鉴国内外多种交通模式行程规划先进经验,结合铁路客票发售和预订系统(简称:铁路客票系统)在多式联运方面的实践,依托铁路客票系统出行即服务(MaaS,Mobility as a Service)+智能服务平台,提出多模式行程规划方法框架;该方法划分为数据收集、信息处理和行程优化3个阶段,充分利用各种交通模式已有的路径计算方案,实现多模式行程动态规划。后续将对该方法持续迭代优化,以生成精简、高效的多模式路径集合,使平台推荐的多模式路径方案更贴近旅客实际出行需求。
-
关键词:
- 铁路客票发售和预订系统 /
- 智能出行 /
- 出行即服务 /
- 行程规划 /
- 综合交通
Abstract: Multimodal journey planning is an important part of operation technologies for China's intelligent high-speed railway 2.0 , and is a key technical means to promote the high-quality development of passenger service and the integrated development of multimodal transportation. Based on the advanced experience of journey planning in multimodal transportation abroad, combined with the practices of China railway ticketing and reservation system in multimodal transport, this paper proposes the framework of multi-mode trip planning method based on the intelligent MaaS+ platform of the system, which is divided into three stages: data collection, data processing and journey optimization, and makes full use of the existing route calculation schemes of different transportations to realize dynamic multimodal journey planning. Subsequently, this method will continue to be iteratively optimized to generate a simple and efficient multi-mode path set so that the multi-mode path scheme recommended by the platform is more close to the actual travel needs of passengers. -
-
表 1 旅客出行主要交通工具及组合的典型应用场景
交通工具及组合 应用场景 前提条件 共享单车 城市内短距离旅行,绿色出行 出发地和目的地附近有共享单车停放点,且均在运营商的运营范围内 共享单车-公共交通 旅行距离超出共享单车服务范围,绿色出行 出发地或目的地附近有共享单车停放点,且均在运营商的运营范围之外 自驾车或者网约车 城市群内旅行,中等距离,非绿色出行 公共交通之间无法衔接 自驾车(或网约车)-公共交通 城市群内旅行,中等距离 公共交通乘车站距离远 铁路或航空 长距离旅行 出发地和目的地与铁路或者航空客运站距离近 铁路(或航空)-公共交通 长距离旅行,绿色出行 铁路或者航空客运站与公共交通衔接 铁路(或航空)-自驾车(或网约车) 长距离旅行 无法换乘,或者旅客偏好 -
[1] Vickerman R. International encyclopedia of transportation[M]. Amsterdam: Elsevier, 2021.
[2] MaaS Alliance. White Paper, Guidelines & Recommendation to Create the Foundations for Thriving Maas Ecosystem[R]. Brussels: MaaS Alliance, 2017.
[3] 王同军. 中国智能高速铁路2.0的内涵特征、体系架构与实施路径 [J]. 铁路计算机应用,2022,31(7):1-9. [4] 刘向龙,刘好德,李香静,等. 中国出行即服务(MaaS)体系框架与发展路径研究 [J]. 交通运输研究,2019,5(3):1-9. [5] 李卫波. 扩大内需战略部署下推动“出行即服务”模式提级发展的一种新思路[J/OL]. 综合运输, (2023-03-30). https://kns.cnki.net/kns8/Detail?sfield=fn&QueryID=0&CurRec=1&recid=&FileName=YSZH20230327002&DbName=CAPJLAST&DbCode=CAPJ&yx=Y&pr=&URLID=11.1197.u.20230328.1126.004. [6] 汪健雄,张晨阳,肖玉兰,等. 铁路客票系统MaaS+智能服务体系研究 [J]. 铁路计算机应用,2022,31(7):69-74. [7] Aditjandra P. Review of international journey planning system to welcoming MaaS [J]. Advances in Transport Policy and Planning, 2019, 3: 29-47.
[8] Georgakis P, Almohammad A, Bothos E, et al. Heuristic-based journey planner for mobility as a service (MaaS) [J]. Sustainability, 2020, 12(23): 10140. DOI: 10.3390/su122310140
[9] Dimokas N, Kalogirou K, Spanidis P, et al. A mobile application for multimodal trip planning[C]// 2018 9th International Conference on Information, Intelligence, Systems and Applications (IISA), 23-25 July, 2018, Zakynthos, Greece. New York, USA: IEEE, 2018: 1-8.
[10] Liebig T, Piatkowski N, Bockermann C, et al. Dynamic route planning with real-time traffic predictions [J]. Information Systems, 2017, 64: 258-265. DOI: 10.1016/j.is.2016.01.007
[11] 郭根材,张军锋. 直达与换乘相结合的旅客行程规划模型与算法研究 [J]. 铁道运输与经济,2019,41(7):106-112. [12] 张 霞,单杏花,戴琳琳,等. 铁路客票快速经由算法的研究与实现 [J]. 铁路计算机应用,2018,27(12):23-26. [13] 于 澎,朱建生. 基于人工神经网络的铁路客票系统中转路径选取研究 [J]. 铁道运输与经济,2010,32(3):42-46. [14] 单杏花,朱建军,朱颖婷,等. 综合交通下的旅客多式联运智能出行研究 [J]. 铁路计算机应用,2019,28(12):1-4,9. [15] Manley E J, Orr S W, Cheng T. A heuristic model of bounded route choice in urban areas [J]. Transportation Research Part C:Emerging Technologies, 2015, 56: 195-209. DOI: 10.1016/j.trc.2015.03.020