• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

后疫情时代基于XGBoost的铁路客运站客流量预测研究

王平, 吴文波, 马毅华, 许江, 宗智诚

王平, 吴文波, 马毅华, 许江, 宗智诚. 后疫情时代基于XGBoost的铁路客运站客流量预测研究[J]. 铁路计算机应用, 2022, 31(1): 22-26. DOI: 10.3969/j.issn.1005-8451.2022.01.03
引用本文: 王平, 吴文波, 马毅华, 许江, 宗智诚. 后疫情时代基于XGBoost的铁路客运站客流量预测研究[J]. 铁路计算机应用, 2022, 31(1): 22-26. DOI: 10.3969/j.issn.1005-8451.2022.01.03
WANG Ping, WU Wenbo, MA Yihua, XU Jiang, ZONG Zhicheng. Research on passenger flow forecast for railway passenger station based on XGBoost in post-pandemic era[J]. Railway Computer Application, 2022, 31(1): 22-26. DOI: 10.3969/j.issn.1005-8451.2022.01.03
Citation: WANG Ping, WU Wenbo, MA Yihua, XU Jiang, ZONG Zhicheng. Research on passenger flow forecast for railway passenger station based on XGBoost in post-pandemic era[J]. Railway Computer Application, 2022, 31(1): 22-26. DOI: 10.3969/j.issn.1005-8451.2022.01.03

后疫情时代基于XGBoost的铁路客运站客流量预测研究

基金项目: 中国铁路上海局集团有限公司科研项目(2018179)。
详细信息
    作者简介:

    王 平,正高级工程师

    吴文波,高级工程师

  • 中图分类号: U293.13 : TP39

Research on passenger flow forecast for railway passenger station based on XGBoost in post-pandemic era

  • 摘要: 进入“后疫情时期”,铁路客流正逐步回升,但呈现较大波动,面对铁路提质增效的任务,准确预测客流量愈发重要。文章采用极端梯度提升(XGBoost,eXtreme Gradient Boosting)模型,以新冠肺炎疫情、天气和日期属性作为影响因素,选取上海站2016年1月1日—2020年7月27日客流量数据作为训练集和验证集,利用5折交叉验证和网格搜索(Grid Search)得到最优参数,并对上海站2020年7月28日—2021年5月17日的客流量进行预测,预测拟合度$ {R}^{2} $为0.812,总体预测效果较好。
    Abstract: Entering the post-pandemic era, railway passenger flow is gradually rising, but there is a large fluctuation. Facing the task of improving the quality and operation efficiency of railway, accurate prediction of passenger flow is becoming more and more important. In this paper, XGBoost model was adopted for passenger flow forecast with COVID-19 pandemic, weather, and date attributes as influencing factors. Meanwhile, passenger flow data of Shanghai Railway Station from January 1, 2016 to July 27, 2020 were selected as training set and validation set and the optimal parameters of the XGBoost-based passenger flow forecast model were obtained by using 5-fold cross-validation and Grid Search. Then, the passenger flow of Shanghai Railway Station from July 28, 2020 to May 17, 2021 was predicted using this model. The result of the prediction attained a fitting degree of 0.812, indicating that the overall prediction effect is good.
  • 图  1   2016年—2021年上海站客流量总体变化趋势

    图  2   新冠肺炎疫情本土确诊人数和客流量关系曲线

    图  3   上海站1年内客流量变化(1月—12月)

    图  4   上海市1年内气温变化(1月—12月)

    图  5   上海站1个星期内客流量变化(2016年1月1日—2021年5月17日)

    图  6   上海站节假日客流量变化(2016年1月1日—2021年5月17日)

    图  7   上海站实际客流量与XGBoost预测结果(2020年7月28日—2021年5月17日)

    表  1   2016—2021年上海站客流量(从大到小排序)

    序号日期客流量(人次)
    12019-05-01189841
    22021-05-01187263
    32019-10-01184243
    42018-10-01179396
    .........
    222016-10-01153110
    .........
    272017-04-29149480
    .........
    2122020-05-01105975
    .........
    下载: 导出CSV
  • [1] 林晓言,李明真,陈小君. 疫情对我国铁路行业发展的影响与对策 [J]. 铁道经济研究,2020(2):1-6. DOI: 10.3969/j.issn.1004-9746.2020.02.001
    [2] 新华社. 上半年全国铁路发送旅客8.18亿人次[EB/OL].(2020-07-09)[2021-06-22]. http://www.xinhuanet.com/travel/2020-07/09/c_1126214823.htm.
    [3] 黄召杰,冯 硕. 灰色预测模型在铁路客流预测中的应用 [J]. 交通科技与经济,2014,16(1):57-60. DOI: 10.3969/j.issn.1008-5696.2014.01.016
    [4] 曹鸿飞,张 铭,李 平. 灰色动态模型群在城市轨道交通客流预测中的应用研究 [J]. 铁路计算机应用,2012,21(3):1-3,8. DOI: 10.3969/j.issn.1005-8451.2012.03.001
    [5] 郭 淼. 基于支持向量回归的大型客运站客流量预测应用研究 [J]. 铁路计算机应用,2021,30(3):15-18. DOI: 10.3969/j.issn.1005-8451.2021.03.004
    [6] 孟 歌,王洪业,李丽辉,等. 基于EMD的SVR方法在铁路客流预测中的应用 [J]. 铁路计算机应用,2020,29(4):28-32. DOI: 10.3969/j.issn.1005-8451.2020.04.007
    [7] 滕 靖,李金洋. 考虑日期属性和天气因素的铁路城际短期客流预测方法 [J]. 中国铁道科学,2020,41(5):136-144. DOI: 10.3969/j.issn.1001-4632.2020.05.16
    [8]

    CHEN TIANQI, GUESTRIN CARLOS. XGBoost: A Scalable Tree Boosting System[C]// In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '16). New York, USA: Association for Computing Machinery, 2016: 785–794.

  • 期刊类型引用(7)

    1. 张丽丹. 多网融合背景下都市圈市域(郊)铁路网规划方案评价研究. 铁道标准设计. 2024(04): 27-34 . 百度学术
    2. 李然,谭衢霖,王春波,夏宇. 基于GIS和区间直觉模糊集的铁路线网规划评价. 测绘与空间地理信息. 2023(05): 47-54 . 百度学术
    3. 吕颖. 都市圈综合轨道交通线网布局评价指标研究. 铁道标准设计. 2021(04): 25-30+35 . 百度学术
    4. 申小凡,张博轩,王嘉铭,魏靖轩,刘梦云. 基于GIS与层次-熵灰色模糊的高铁线路地形条件综合评价分析——以北京至西安东西两线为例. 中国设备工程. 2021(13): 138-142 . 百度学术
    5. 达成,钱勇生,曾俊伟,许得杰,马智平. 城市轨道交通线网结构评价研究. 铁道运输与经济. 2020(02): 122-127+134 . 百度学术
    6. 陈小龙. 基于模糊综合评价的城市轨道交通线网规划方案评价研究. 智能建筑与智慧城市. 2019(01): 82-84 . 百度学术
    7. 夏宇,谭衢霖,蔡小培,秦晓春. 基于Civil 3D部件编辑器的铁路BIM部件模型构建研究. 铁路计算机应用. 2019(06): 30-35 . 本站查看

    其他类型引用(8)

图(7)  /  表(1)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  127
  • PDF下载量:  59
  • 被引次数: 15
出版历程
  • 收稿日期:  2021-06-21
  • 刊出日期:  2022-01-27

目录

    /

    返回文章
    返回