Evaluation method of railway hub capacity utilization based on subsystem division
-
摘要: 针对铁路枢纽能力利用率评价问题,从铁路枢纽的运输组织特性出发,将枢纽划分为客运、货运、行车、编解等子系统,构建枢纽子系统-构成要素-评价指标3个层次的指标体系。按照各指标项的适中型特征构造评价得分函数,设计包括子系统权重、构成要素权重和指标权重的层次化权重设置方法,建立基于子系统划分的枢纽能力利用率评价方法。开发了枢纽能力利用率评价软件,以郑州枢纽为实例进行评价分析,结果表明:该枢纽各子系统能力差异较大,编解瓶颈对枢纽能力制约较为显著。评价方法可全面评价枢纽能力状况、分析识别制约枢纽能力的瓶颈,为枢纽运输组织和总图设计提供决策依据。Abstract: To evaluate the capacity utilization of railway hub, the railway hub is divided into several subsystems including passenger transport subsystem, freight transport subsystem, train operation subsystem and marshaling subsystem according to the characteristics of transportation organization of railway hub. A three-level index system including hub subsystems, constituent elements and evaluation indexes is constructed. Furthermore, the index measure function is constructed according to the moderate characteristic of each index item, the setting method of hierarchical weights for subsystems, constituent elements and evaluation indexes is designed, and the evaluation method of railway hub capacity utilization is established. On the basis of this, the software of railway hub capacity utilization evaluation is also developed and a case study on Zhengzhou railway hub is also presented. The results show that the subsystems of the railway hub have a great difference in their capability and the bottlenecks of marshaling yards have been significant constraints on the hub's capacity. The proposed method can provide decision support for transportation organization and general layout design of a railway hub by comprehensively evaluating its capacity utilization and identifying the bottlenecks.
-
-
表 1 某指标项的评价得分取值
能力利用率(%) 得分取值 [0, 45] −1 (45, 55] −2 (55, 65] −3 (65, 75] +5 (75, 85] +4 (85, 95] +2 (95, 100] +1 表 2 郑州枢纽的能力瓶颈点情况分析
排序 按能力利用率排序 利用率(%) 按贡献率排序 贡献率 1 陇海线铁炉至关帝庙区间通过能力 100 郑州北站下行驼峰解体能力 2.94 2 陇海线莆田至莆田西区间通过能力 98.4 郑州北站上行驼峰解体能力 2.72 3 郑州北站下行驼峰解体能力 97.9 陇海线铁炉至关帝庙区间通过能力 1.80 4 京广线广武至东双桥区间通过能力 97.5 陇海线莆田至莆田西区间通过能力 1.77 5 陇海线占杨至莆田区间通过能力 95.3 京广线广武至东双桥区间通过能力 1.76 6 郑州北站上行驼峰解体能力 90.8 陇海线占杨至莆田区间通过能力 1.72 -
[1] 何世伟,宋 瑞,戴新鎏,等. 路网运输能力及计算方法的研究 [J]. 铁道学报,2003(2):5-9. DOI: 10.3321/j.issn:1001-8360.2003.02.002 [2] 何志工. 铁路枢纽总图规划及其评价体系的思考 [J]. 铁道标准设计,2012(12):5-8. [3] 雷中林. 铁路枢纽总图规划评价体系深化研究 [J]. 铁道工程学报,2016,33(2):1-5. DOI: 10.3969/j.issn.1006-2106.2016.02.001 [4] 黄隆飞. 铁路枢纽规划方案综合评价研究与系统开发[D]. 北京: 北京交通大学, 2010. [5] Sanja Durmisevic, Sevil Sariyildiz. A systematic quality assessment of underground spaces-public transport stations [J]. Cities, 2001, 18(1): 13-23.
[6] 汤烈超. 基于可拓多级优度方法的城市轨道交通换乘站设计方案评价[D]. 兰州: 兰州交通大学, 2014. [7] 陆 铖. 大型综合交通枢纽站换乘客流组织动态仿真与评价方法的研究[D]. 北京: 北京交通大学, 2008. [8] 杜彩军,张 翼,陈建华. 综合客运枢纽信息系统总体架构研究 [J]. 铁路计算机应用,2014,23(2):17-20. DOI: 10.3969/j.issn.1005-8451.2014.02.005 [9] 江新乐,李世年. 枢纽地区调度指挥辅助管理系统的设计与实现 [J]. 铁路计算机应用,2004,13(10):16-18. DOI: 10.3969/j.issn.1005-8451.2004.10.007 -
期刊类型引用(3)
1. 张森,于敏. 基于“互联网+”的城市轨道交通乘客智能服务模式探讨. 都市快轨交通. 2021(03): 146-152 . 百度学术
2. Xingping Wu,Xusheng Liu,Yeteng An. Key technologies of artificial intelligence in electric power customer service. Global Energy Interconnection. 2021(06): 631-640 . 必应学术
3. 罗慧,梁笛. 广州地铁线网智能客服系统平台实施方案研究. 现代城市轨道交通. 2020(11): 94-98 . 百度学术
其他类型引用(4)