• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

自然语言处理关键技术在智能铁路中的应用研究

薛蕊, 马小宁, 李平, 杨连报

薛蕊, 马小宁, 李平, 杨连报. 自然语言处理关键技术在智能铁路中的应用研究[J]. 铁路计算机应用, 2018, 27(10): 40-44.
引用本文: 薛蕊, 马小宁, 李平, 杨连报. 自然语言处理关键技术在智能铁路中的应用研究[J]. 铁路计算机应用, 2018, 27(10): 40-44.
XUE Rui, MA Xiaoning, LI Ping, YANG Lianbao. Nature language processing techniques and its applications in intelligent railway[J]. Railway Computer Application, 2018, 27(10): 40-44.
Citation: XUE Rui, MA Xiaoning, LI Ping, YANG Lianbao. Nature language processing techniques and its applications in intelligent railway[J]. Railway Computer Application, 2018, 27(10): 40-44.

自然语言处理关键技术在智能铁路中的应用研究

基金项目: 中国铁道科学研究院重大课题(2017YJ005)
详细信息
    作者简介:

    薛蕊,研究实习员;马小宁,副研究员

  • 中图分类号: U2:TP39

Nature language processing techniques and its applications in intelligent railway

  • 摘要: 介绍自然语言处理发展历程和关键技术,结合智能运营、智能装备和智能建造3大领域,分析并总结自然语言处理相关技术在智能客服、安全管控、资产档案、智能维修、决策辅助和督查校验等方面的应用。通过对这些前沿应用的发展综述和探索发掘,论证自然语言处理相关技术方法可以成为铁路行业完成智能铁路转变的助力,并且随着自然语言处理领域自身的不断发展和突破,为铁路的智能化进程带来更显著的变革。

    Abstract: This paper introduced the development process and key technologies of natural language processing.Combined with the three fields of intelligent operation, intelligent equipment and intelligent manufacturing, the application of natural language processing's related technologies in intelligent customer service, safety control, asset archives, intelligent maintenance, decision support and inspection and calibration was analyzed and summarized. By summarizing the development and exploration of these frontier applications, it was demonstrated that natural language processing's relevant technologies and methods could help the railway industry to implement the transformation of intelligent railway. With the continuous development and breakthroughs in the natural language processing field, it could bring more significant changes to the railway intellectualization process.
  • [1] Joseph, S.R., Hlomani, H., Letsholo, K., et al., Natural Language Processing: A Review[J]. International Journal of Research in Engineering and Applied Sciences, 2016, 6(3): 207-210.
    [2] 徐 静, 杨小平. 基于CRF 模型的网络新闻主题线索发掘研究[J]. 中文信息学报, 2017, 31(3):94-100.
    [3] 王 超, 李 楠, 李欣丽,等. 倾向性分析用于金融市场波动率的研究[J]. 中文信息学报, 2009, 23(1):95-98.
    [4] 李丽双, 郭元凯. 基于CNN-BLSTM-CRF 模型的生物医学命名实体识别[J]. 中文信息学报, 2018,32(1):116-122.
    [5] Ferrari A, Gori G, Rosadini B, et al. Detecting requirements defects with NLP patterns: an industrial experience in the railway domain[J]. Empirical Software Engineering, 2018(1):1-50.
    [6] 林奕欧, 雷 航, 李晓瑜, 等. 自然语言处理中的深度学习:方法及应用[J]. 电子科技大学学报, 2017, 46(6): 913-919.
    [7] 庞 亮, 兰艳艳, 徐 君, 等. 深度文本匹配综述[J]. 计算机学报,2017,40(4):985-1003.
    [8] 李 芳, 刘胜宇, 刘 峥, 等. 生物医学语义关系抽取方法综述[J]. 图书馆论坛, 2017(6):61-69.
    [9] Jindal R, Malhotra R, Jain A. Techniques for text classification:Literature review and current trends[J]. 2015, 12(2): 1-28.
    [10] Zitouni I. Natural Language Processing of Semitic Languages[M]. Springer Berlin Heidelberg, 2014: 221-245.
    [11] Shetty A, Bajaj R. Auto Text Summarization with Categorization and Sentiment Analysis[J]. International Journal of Computer Applications, 2015, 130(7): 4053-4060.
    [12] Yogan, Jaya Kumar, et al. A review on automatic text summarization approaches[J]. Journal of Computer Science, 2016,12(4): 178-190.
    [13] Nickel M, Murphy K, Tresp V, et al. A Review of Relational Machine Learning for Knowledge Graphs[J]. Proceedings of the IEEE, 2015, 104(1):11-33.
    [14] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4):589-606.
    [15] Andrenucci A, Sneiders E. Automated Question Answering:Review of the Main Approaches[C]//International Conference on Information Technology and Applications. IEEE Computer Society, 2005:514-519.
    [16] Ajitkumar M, Khillare S.A., C Namrata. Question Answering System, Approaches and Techniques: A Review[J]. International Journal of Computer Applications. 2016, 141:34-39.
    [17] Chun A H W, Suen T Y T. Engineering works scheduling for Hong Kong's rail network[C]//Twenty-Eighth AAAI Conference on Artificial Intelligence. AAAI Press, 2014: 2890-2897.
    [18] Faiz RB, Edirisinghe EA. Decision making for predictive maintenance in asset information management[J]. Interdisciplinary Journal of Information, Knowledge, and Management.2009, 4(1): 23-36.
    [19] 马智亮, 蔡诗瑶. 基于BIM的建筑施工智能化[J]. 施工技术,2018, 47(6):70-83.
  • 期刊类型引用(15)

    1. 施建明. 用于状态监测与诊断的Flink流式处理系统. 计算机应用与软件. 2025(02): 391-397 . 百度学术
    2. 刘通,程亚萍,许鑫,王菲儿,金锋,王峰. 钢轨故障预测与健康管理系统方案设计. 铁道技术监督. 2025(01): 34-40 . 百度学术
    3. 张晓明,王玥,李冬,张鸿嘉. 动车组塞拉门PHM技术研究. 铁道车辆. 2023(01): 53-55 . 百度学术
    4. 屈利杰,吴强,杨苡辰,王亮. 基于智能运维系统列车跳站问题研究. 智慧轨道交通. 2023(05): 62-66 . 百度学术
    5. 延九磊,张瑞芳,申宇燕,卢万平,刘峰. 动车组安全与运维集成平台方案技术研究. 铁道机车车辆. 2022(01): 65-70 . 百度学术
    6. 史晓磊,王华伟,刘宗洋,祁苗苗. 铁路货车配件信息管理系统设计. 铁路计算机应用. 2022(06): 40-43 . 本站查看
    7. 郭燕辉. 城轨列车车载健康管理系统设计与应用研究. 铁道机车车辆. 2022(06): 131-138 . 百度学术
    8. 徐博. 动车组牵引电机的故障预测与健康管理技术的研究. 石家庄铁路职业技术学院学报. 2022(04): 65-69 . 百度学术
    9. 宋杰. 城市轨道交通车辆及设备状态监测系统. 铁路计算机应用. 2021(02): 68-73 . 本站查看
    10. 谈宏志. 故障预测与健康管理技术在民用领域的应用. 机械制造. 2021(06): 69-74 . 百度学术
    11. 王中尧. 京张高铁智能动车组PHM系统以太网传输规范. 轨道交通装备与技术. 2020(01): 56-59 . 百度学术
    12. 李昊,张吉斌. 永磁同步电机牵引电传动系统研究. 现代工业经济和信息化. 2020(04): 25-28 . 百度学术
    13. 李宏峰. 基于大数据平台的接触网健康管理. 电气化铁道. 2020(S2): 50-53 . 百度学术
    14. 张吉斌,詹哲军,张瑞峰,丁志勇. 高速列车永磁牵引系统研究与应用. 现代工业经济和信息化. 2019(05): 16-18 . 百度学术
    15. 高凯,宋娜,王红艳,张宇,李悦. 基于大数据的地铁车辆智能故障监测系统研究. 铁道机车车辆. 2019(S1): 35-39 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  100
  • HTML全文浏览量:  2
  • PDF下载量:  69
  • 被引次数: 24
出版历程
  • 收稿日期:  2018-02-13
  • 刊出日期:  2018-10-24

目录

    /

    返回文章
    返回