• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

基于主动表观模型及PERCLOS的疲劳检测研究

唐春林, 杨昌休, 陈兴劼

唐春林, 杨昌休, 陈兴劼. 基于主动表观模型及PERCLOS的疲劳检测研究[J]. 铁路计算机应用, 2016, 25(11): 5-9.
引用本文: 唐春林, 杨昌休, 陈兴劼. 基于主动表观模型及PERCLOS的疲劳检测研究[J]. 铁路计算机应用, 2016, 25(11): 5-9.
TANG Chunlin, YANG Changxiu, CHEN Xingjie. Active appearance model and PERCLOS based fatigue detection[J]. Railway Computer Application, 2016, 25(11): 5-9.
Citation: TANG Chunlin, YANG Changxiu, CHEN Xingjie. Active appearance model and PERCLOS based fatigue detection[J]. Railway Computer Application, 2016, 25(11): 5-9.

基于主动表观模型及PERCLOS的疲劳检测研究

基金项目: 重庆市教委科学技术研究项目(KJ1405501)。
详细信息
    作者简介:

    唐春林,教授;杨昌休,讲师。

  • 中图分类号: U231:F530.69:TP39

Active appearance model and PERCLOS based fatigue detection

  • 摘要: 针对城市轨道交通电客车司机长时间驾驶产生的疲劳问题,目前主要是通过规章制度及警惕按钮来解决,这样既增加司机的劳动强度,也对司机疲劳驾驶检测效果有限。文章针对电客车司机现场工作环境,提出了一种主动在线实时检测方法,该方法通过视频序列分析人脸信息,采用主动表观模型完成对人眼的识别及定位,采用PERCLOS算法完成对司机疲劳检测。实验证明,该模型和算法能够很好地完成对司机的疲劳检测。
    Abstract: At present, the fatigue problem of long time driving for the drivers of Urban Transit was solved by rules and alert button. These methods increase the labor intensity of the driver, the driver fatigue driving detection effect is limited. So this article put forward an active online real-time detection method based on the site work environment of drivers, the method was used to analyze the face information through a video sequence, identify and locate the human eye by using active appearance model, implement the detection of driver fatigue by PERCLOS Algorithm. Experimental results showed that the model and the Algorithm were able to implement the detection of driver fatigue.
  • [1] 中国城市轨道交通协会. 2015 年我国城轨交通线路概况[DB/OL]. http://www.camet.org.cn/hyxw/201601/t20160122_442847. htm.2016.
    [2] 孙庆雨. 城轨列车警惕按钮功能原理分析[J]. 科研,2015(12):161-163.
    [3] 白金蓬,黄 英,江宜舟,等. 驾驶状态实时监测系统设计[J].电子测量与仪器学报,2014,28(9):965-973.
    [4] 石 坚,吴远鹏,卓 斌,等. 汽车驾驶员主动安全性因素的辨识与分析[J].上海交通大学学报,2000,34(4):441-444.
    [5] BERGASA L M,NUEVO J,SOTELO M A,et al. Real-time system for monitoring driver vigilance [J].IEEE Transactions on Intelligent transportation Systems, 2006, 7(1) : 63-77.
    [6] Cootes T F,Cooper D H, and Taylor CJ,et al.Active shape models-their training and application[J]. Computer Vision and Image Understanding,1995,61(1): 38-59.
    [7] G.J. Edwards, A. Lanitis, C.J. Taylor, and Cootes T F. Statistical Models of Face Images-Improving Specificity[J].Image Vision Computing,1998, 16(3):203-211.
    [8] Viola P, Jones M J.Robust real-time face detection [J].International Journal of Computer Vision, 2004, 57(2): 137-154.
    [9] Takahiro Ishikawa, Simon Baker,Iain Matthews, Takeo Kanade.Passive Driver Gaze Tracking with Active Appearance Models[C].Proc. 11th World Congress on Intelligent  ransportation Systems,2004:1019-2025.
    [10] Cootes T F,Edwards G J and Taylor C J. Active appearance models [J]. Proc European Conference on Computer Vision, 1998(2):484-498.
    [11] Kass M, Witkin A, and TerzopoulosD.Snake:active contour models[J]. Int. Journal of Computer Vision, 1987,1(4):321-331.
    [12] 李 爽. 疲劳驾驶特征和参数提取研究[D]. 济南:山东大学,2013.
    [13] Cootes T F, Edwards G J and Taylor C J. Active appearance models[J]. Proc. European Conference on Computer Vision, 1998 (2): 484-498.
    [14] Cootes T F, Edwards G J and Taylor C J.Active appearance mo-dels[J]. Pattern Analysis and Machine Intelligence, 2001, 23(6): 681-685.
    [15] 施树明, 金立生, 平荣本,等. 基于机器视觉的驾驶员嘴部状态检测方法[J]. 吉林大学学报(工学版),2004(4).
计量
  • 文章访问数:  102
  • HTML全文浏览量:  1
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-14
  • 刊出日期:  2016-11-24

目录

    /

    返回文章
    返回