• 查询稿件
  • 获取最新论文
  • 知晓行业信息
官方微信 欢迎关注

基于状态维修的动车组关键部件寿命预测

张春, 李鹏程

张春, 李鹏程. 基于状态维修的动车组关键部件寿命预测[J]. 铁路计算机应用, 2015, 24(7): 1-4.
引用本文: 张春, 李鹏程. 基于状态维修的动车组关键部件寿命预测[J]. 铁路计算机应用, 2015, 24(7): 1-4.
ZHANG Chun, LI Pengcheng. Key components life prediction of EMU based on condition-based maintenance[J]. Railway Computer Application, 2015, 24(7): 1-4.
Citation: ZHANG Chun, LI Pengcheng. Key components life prediction of EMU based on condition-based maintenance[J]. Railway Computer Application, 2015, 24(7): 1-4.

基于状态维修的动车组关键部件寿命预测

基金项目: 基金项目:国家“八六三”计划项目(2012AA040812)
详细信息
    作者简介:

    作者简介:张 春,高级工程师;李鹏程,在读硕士研究生。

  • 中图分类号: U266.2

Key components life prediction of EMU based on condition-based maintenance

  • 摘要: 随着社会科学技术的发展,动车组维修技术得到了提高,动车组运行时间越长相应的故障率也越高。通过状态维修策略中采集实时数据,与正常值进行对比,就可以发现非正常值,然后预测关键部件的寿命,使动车组达到最优状态。利用状态维修策略建立关键部件的寿命预测模型,通过MATLAB计算数据。结果表明,所研究的模型方法可用于故障性动车组将要运行时间的确定。
    Abstract: Along with the development of science and technology, the technologies of EMU equipment maintenance were improved. With the accumulation of running time, the probability of equipment failure was also increased. Condition-based maintenance strategy was to collect the equipment running real-time data, compare it with the normal value, find the potential failures and predict the life. Based on the strategy, it was established a new model for key components life prediction. The data was calculated with MATLAB. The results showed that the model could be applied to the confirmation of the running time of EMU.
  • [1] Grall A, Berengure C,Dieulle L.A Condition based Maintenance Policy for Stochastically Deteriorating System[J].Reliability Engineering and System Safety, 2002, 76: 167-180.
    [2] VLOK P J, C0ETZEE J L, BANJEVlC D, et a1. 0ptimal component replacement decisions using vibration monitoring and the proportional-hazards model[J]. Journal of the 0perational Research Society, 2002, 53(2): 193-202.
    [3] LIN D,WISEMAN M,BANJEVIC D, et a1. An approach to signal processing and condition-based maintenance for gearboxes subject to tooth failure[J].1vIechanical System and Signal Processing, 2004(18): 993-1007.
    [4] Christer A H.Innovatory Decision Making, the Role and Effectiveness of Theories of Decision in Practice[R].London:Hodder&Stoughton, 1973: 369-377.
    [5] Jia Y X,Wallg W.A Development of a Prototype softwal on CBM modeling[C]. Proceedings of ICRMS 2001,Dalian,China 28th-31stAugust, 2001: 662-667.
    [6] WANG W. Modelling the probability assessment of system state prognosis using available condition monitoring information [J]. IMA Journal of Management Mathematics, 2006(17): 225-233.
    [7] DONG M, HE D. Hidden semi-Markov model-based metho-dology for multi-sensor equipment health diagnosis and prognosis[J]. European Journal of Operational Research, 2007, 178(3): 858-878.
    [8] KWAN C, ZHANG x, XU R et a1. A noval approach to fault diagnostics and prognostics[A]. Proceedings of IEEE Inter-national Conference on Robotics 8L Automation[C].Taipei, 2003.
    [9] 卢乃宽.世界高速铁路建设发展趋势[J].中国铁路,2000 (3):19-24.
    [10] 陈洪奎,袁绍宪,邱洪军.设备状态维修在现代企业设备管理中的运用[J].棉纺织技术,2000,28(7): 414-418.
    [11] 陈洪奎,袁绍宪,邱洪军. 设备状态维修在现代企业设备管理中的运用[J]. 棉纺织技术,2000,28(7).
    [12] 凌 丹,黄洪钟,张小玲,蒋工亮.混合威布尔分布参数估计的L-M算法[J].电子科技大学学报,2008,37(4):634-638.
  • 期刊类型引用(0)

    其他类型引用(4)

计量
  • 文章访问数:  108
  • HTML全文浏览量:  0
  • PDF下载量:  73
  • 被引次数: 4
出版历程
  • 收稿日期:  2014-11-22
  • 刊出日期:  2015-07-24

目录

    /

    返回文章
    返回