• 查询稿件
  • 获取最新论文
  • 知晓行业信息

基于光流引导Transformer模型的重载铁路监控压缩视频质量增强方法

Compressed video quality enhancement method for heavy-haul railway surveillance based on optical flow guided Transformer model

  • 摘要: 重载铁路视频监控系统的不断扩增,使得铁路视频数据急剧增长,对数据存储和传输等能力的要求更高。为此,提出了一种基于光流引导Transformer模型的重载铁路监控压缩视频质量增强方法。通过光流补全网络提取帧间运动信息,指导Transformer模型关注视频序列中的重要特征;结合多头自注意力机制和时间空间特征融合策略,有效提取视频帧的时空特征;通过在Transformer模型结构中融入光流引导的特征增强模块,进一步提升视频质量增强的准确性和效率。基于实际采集的重载铁路监控视频数据集的实验结果表明,该方法显著优于现有的视频质量增强方法,具有实用价值。

     

    Abstract: The continuous expansion of heavy-haul railway video surveillance systems has led to a sharp increase in railway video data, with higher requirements for data storage and transmission capabilities. To this end, this paper proposed a compressed video quality enhancement method for heavy-haul railway surveillance based on optical flow guided Transformer model: Extracting inter frame motion information through optical flow completion network to guide the Transformer model to focus on important features in the video sequence; Combining multi head self-attention mechanism and spatiotemporal feature fusion strategy, effectively extracting spatiotemporal features of video frames; By incorporating optical flow guided feature enhancement modules into the Transformer model structure, further improving the accuracy and efficiency of video quality enhancement. The experimental results based on the actual collected heavy-duty railway surveillance video dataset show that this method is significantly superior to existing video quality enhancement methods and has practical value.

     

/

返回文章
返回